Blog
/
No items found.
/
November 25, 2024

Why Artificial Intelligence is the Future of Cybersecurity

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
25
Nov 2024
This blog explores the impact of AI on the threat landscape, the benefits of AI in cybersecurity, and the role it plays in enhancing security practices and tools.

Introduction: AI & Cybersecurity

In the wake of artificial intelligence (AI) becoming more commonplace, it’s no surprise to see that threat actors are also adopting the use of AI in their attacks at an accelerated pace. AI enables augmentation of complex tasks such as spear-phishing, deep fakes, polymorphic malware generation, and advanced persistent threat (APT) campaigns, which significantly enhances the sophistication and scale of their operations. This has put security professionals in a reactive state, struggling to keep pace with the proliferation of threats.

As AI reshapes the future of cyber threats, defenders are also looking to integrate AI technologies into their security stack. Adopting AI-powered solutions in cybersecurity enables security teams to detect and respond to these advanced threats more quickly and accurately as well as automate traditionally manual and routine tasks. According to research done by Darktrace in the 2024 State of AI Cybersecurity Report improving threat detection, identifying exploitable vulnerabilities, and automating low level security tasks were the top three ways practitioners saw AI enhancing their security team’s capabilities [1], underscoring the wide-ranging capabilities of AI in cyber.  

In this blog, we will discuss how AI has impacted the threat landscape, the rise of generative AI and AI adoption in security tools, and the importance of using multiple types of AI in cybersecurity solutions for a holistic and proactive approach to keeping your organization safe.  

The impact of AI on the threat landscape

The integration of AI and cybersecurity has brought about significant advancements across industries. However, it also introduces new security risks that challenge traditional defenses.  Three major concerns with the misuse of AI being leveraged by adversaries are: (1) the increase of novel social engineering attacks that are harder to detect and able to bypass traditional security tools,  (2) the ease of access for less experienced threat actors to now deliver advanced attacks at speed and scale and (3) the attacking of AI itself, to include machine learning models, data corpuses and APIs or interfaces.

In the context of social engineering, AI can be used to create more convincing phishing emails, conduct advanced reconnaissance, and simulate human-like interactions to deceive victims more effectively. Generative AI tools, such as ChatGPT, are already being used by adversaries to craft these sophisticated phishing emails, which can more aptly mimic human semantics without spelling or grammatical error and include personal information pulled from internet sources such as social media profiles. And this can all be done at machine speed and scale. In fact, Darktrace researchers observed a 135% rise in ‘novel social engineering attacks’ across Darktrace / EMAIL customers in 2023, corresponding to the widespread adoption and use of ChatGPT [2].  

Furthermore, these sophisticated social engineering attacks are now able to circumvent traditional security tools. In between December 21, 2023, and July 5, 2024, Darktrace / EMAIL detected 17.8 million phishing emails across the fleet, with 62% of these phishing emails successfully bypassing Domain-based Message Authentication, Reporting, and Conformance (DMARC) verification checks [2].  

And while the proliferation of novel attacks fueled by AI is persisting, AI also lowers the barrier to entry for threat actors. Publicly available AI tools make it easy for adversaries to automate complex tasks that previously required advanced technical skills. Additionally, AI-driven platforms and phishing kits available on the dark web provide ready-made solutions, enabling even novice attackers to execute effective cyber campaigns with minimal effort.

The impact of adversarial use of AI on the ever-evolving threat landscape is important for organizations to understand as it fundamentally changes the way we must approach cybersecurity. However, while the intersection of cybersecurity and AI can have potentially negative implications, it is important to recognize that AI can also be used to help protect us.

A generation of generative AI in cybersecurity

When the topic of AI in cybersecurity comes up, it’s typically in reference to generative AI, which became popularized in 2023. While it does not solely encapsulate what AI cybersecurity is or what AI can do in this space, it’s important to understand what generative AI is and how it can be implemented to help organizations get ahead of today’s threats.  

Generative AI (e.g., ChatGPT or Microsoft Copilot) is a type of AI that creates new or original content. It has the capability to generate images, videos, or text based on information it learns from large datasets. These systems use advanced algorithms and deep learning techniques to understand patterns and structures within the data they are trained on, enabling them to generate outputs that are coherent, contextually relevant, and often indistinguishable from human-created content.

For security professionals, generative AI offers some valuable applications. Primarily, it’s used to transform complex security data into clear and concise summaries. By analyzing vast amounts of security logs, alerts, and technical data, it can contextualize critical information quickly and present findings in natural, comprehensible language. This makes it easier for security teams to understand critical information quickly and improves communication with non-technical stakeholders. Generative AI can also automate the creation of realistic simulations for training purposes, helping security teams prepare for various cyberattack scenarios and improve their response strategies.  

Despite its advantages, generative AI also has limitations that organizations must consider. One challenge is the potential for generating false positives, where benign activities are mistakenly flagged as threats, which can overwhelm security teams with unnecessary alerts. Moreover, implementing generative AI requires significant computational resources and expertise, which may be a barrier for some organizations. It can also be susceptible to prompt injection attacks and there are risks with intellectual property or sensitive data being leaked when using publicly available generative AI tools.  In fact, according to the MIT AI Risk Registry, there are potentially over 700 risks that need to be mitigated with the use of generative AI.

Generative AI impact on cyber attacks screenshot data sheet

For more information on generative AI's impact on the cyber threat landscape download the Darktrace Data Sheet

Beyond the Generative AI Glass Ceiling

Generative AI has a place in cybersecurity, but security professionals are starting to recognize that it’s not the only AI organizations should be using in their security tool kit. In fact, according to Darktrace’s State of AI Cybersecurity Report, “86% of survey participants believe generative AI alone is NOT enough to stop zero-day threats.” As we look toward the future of AI in cybersecurity, it’s critical to understand that different types of AI have different strengths and use cases and choosing the technologies based on your organization’s specific needs is paramount.

There are a few types of AI used in cybersecurity that serve different functions. These include:

Supervised Machine Learning: Widely used in cybersecurity due to its ability to learn from labeled datasets. These datasets include historical threat intelligence and known attack patterns, allowing the model to recognize and predict similar threats in the future. For example, supervised machine learning can be applied to email filtering systems to identify and block phishing attempts by learning from past phishing emails. This is human-led training facilitating automation based on known information.  

Large Language Models (LLMs): Deep learning models trained on extensive datasets to understand and generate human-like text. LLMs can analyze vast amounts of text data, such as security logs, incident reports, and threat intelligence feeds, to identify patterns and anomalies that may indicate a cyber threat. They can also generate detailed and coherent reports on security incidents, summarizing complex data into understandable formats.

Natural Language Processing (NLP): Involves the application of computational techniques to process and understand human language. In cybersecurity, NLP can be used to analyze and interpret text-based data, such as emails, chat logs, and social media posts, to identify potential threats. For instance, NLP can help detect phishing attempts by analyzing the language used in emails for signs of deception.

Unsupervised Machine Learning: Continuously learns from raw, unstructured data without predefined labels. It is particularly useful in identifying new and unknown threats by detecting anomalies that deviate from normal behavior. In cybersecurity, unsupervised learning can be applied to network traffic analysis to identify unusual patterns that may indicate a cyberattack. It can also be used in endpoint detection and response (EDR) systems to uncover previously unknown malware by recognizing deviations from typical system behavior.

Types of AI in cybersecurity
Figure 1: Types of AI in cybersecurity

Employing multiple types of AI in cybersecurity is essential for creating a layered and adaptive defense strategy. Each type of AI, from supervised and unsupervised machine learning to large language models (LLMs) and natural language processing (NLP), brings distinct capabilities that address different aspects of cyber threats. Supervised learning excels at recognizing known threats, while unsupervised learning uncovers new anomalies. LLMs and NLP enhance the analysis of textual data for threat detection and response and aid in understanding and mitigating social engineering attacks. By integrating these diverse AI technologies, organizations can achieve a more holistic and resilient cybersecurity framework, capable of adapting to the ever-evolving threat landscape.

A Multi-Layered AI Approach with Darktrace

AI-powered security solutions are emerging as a crucial line of defense against an AI-powered threat landscape. In fact, “Most security stakeholders (71%) are confident that AI-powered security solutions will be better able to block AI-powered threats than traditional tools.” And 96% agree that AI-powered solutions will level up their organization’s defenses.  As organizations look to adopt these tools for cybersecurity, it’s imperative to understand how to evaluate AI vendors to find the right products as well as build trust with these AI-powered solutions.  

Darktrace, a leader in AI cybersecurity since 2013, emphasizes interpretability, explainability, and user control, ensuring that our AI is understandable, customizable and transparent. Darktrace’s approach to cyber defense is rooted in the belief that the right type of AI must be applied to the right use cases. Central to this approach is Self-Learning AI, which is crucial for identifying novel cyber threats that most other tools miss. This is complemented by various AI methods, including LLMs, generative AI, and supervised machine learning, to support the Self-Learning AI.  

Darktrace focuses on where AI can best augment the people in a security team and where it can be used responsibly to have the most positive impact on their work. With a combination of these AI techniques, applied to the right use cases, Darktrace enables organizations to tailor their AI defenses to unique risks, providing extended visibility across their entire digital estates with the Darktrace ActiveAI Security Platform™.

Credit to: Ed Metcalf, Senior Director Product Marketing, AI & Innovations - Nicole Carignan VP of Strategic Cyber AI for their contribution to this blog.

CISOs guide to buying AI white paper cover

To learn more about Darktrace and AI in cybersecurity download the CISO’s Guide to Cyber AI here.

Download the white paper to learn how buyers should approach purchasing AI-based solutions. It includes:

  • Key steps for selecting AI cybersecurity tools
  • Questions to ask and responses to expect from vendors
  • Understand tools available and find the right fit
  • Ensure AI investments align with security goals and needs
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Brittany Woodsmall
Product Marketing Manager, AI & Attack Surface
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

January 29, 2025

/

Inside the SOC

Bytesize Security: Insider Threats in Google Workspace

Default blog imageDefault blog image

What is an insider threat?

An insider threat is a cyber risk originating from within an organization. These threats can involve actions such as an employee inadvertently clicking on a malicious link (e.g., a phishing email) or an employee with malicious intent conducting data exfiltration for corporate sabotage.

Insiders often exploit their knowledge and access to legitimate corporate tools, presenting a continuous risk to organizations. Defenders must protect their digital estate against threats from both within and outside the organization.

For example, in the summer of 2024, Darktrace / IDENTITY successfully detected a user in a customer environment attempting to steal sensitive data from a trusted Google Workspace service. Despite the use of a legitimate and compliant corporate tool, Darktrace identified anomalies in the user’s behavior that indicated malicious intent.

Attack overview: Insider threat

In June 2024, Darktrace detected unusual activity involving the Software-as-a-Service (SaaS) account of a former employee from a customer organization. This individual, who had recently left the company, was observed downloading a significant amount of data in the form of a “.INDD” file (an Adobe InDesign document typically used to create page layouts [1]) from Google Drive.

While the use of Google Drive and other Google Workspace platforms was not unexpected for this employee, Darktrace identified that the user had logged in from an unfamiliar and suspicious IPv6 address before initiating the download. This anomaly triggered a model alert in Darktrace / IDENTITY, flagging the activity as potentially malicious.

A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.
Figure 1: A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.

Following this detection, the customer reached out to Darktrace’s Security Operations Center (SOC) team via the Security Operations Support service for assistance in triaging and investigating the incident further. Darktrace’s SOC team conducted an in-depth investigation, enabling the customer to identify the exact moment of the file download, as well as the contents of the stolen documents. The customer later confirmed that the downloaded files contained sensitive corporate data, including customer details and payment information, likely intended for reuse or sharing with a new employer.

In this particular instance, Darktrace’s Autonomous Response capability was not active, allowing the malicious insider to successfully exfiltrate the files. If Autonomous Response had been enabled, Darktrace would have immediately acted upon detecting the login from an unusual (in this case 100% rare) location by logging out and disabling the SaaS user. This would have provided the customer with the necessary time to review the activity and verify whether the user was authorized to access their SaaS environments.

Conclusion

Insider threats pose a significant challenge for traditional security tools as they involve internal users who are expected to access SaaS platforms. These insiders have preexisting knowledge of the environment, sensitive data, and how to make their activities appear normal, as seen in this case with the use of Google Workspace. This familiarity allows them to avoid having to use more easily detectable intrusion methods like phishing campaigns.

Darktrace’s anomaly detection capabilities, which focus on identifying unusual activity rather than relying on specific rules and signatures, enable it to effectively detect deviations from a user’s expected behavior. For instance, an unusual login from a new location, as in this example, can be flagged even if the subsequent malicious activity appears innocuous due to the use of a trusted application like Google Drive.

Credit to Vivek Rajan (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

SaaS / Resource::Unusual Download Of Externally Shared Google Workspace File

References

[1]https://www.adobe.com/creativecloud/file-types/image/vector/indd-file.html

MITRE ATT&CK Mapping

Technqiue – Tactic – ID

Data from Cloud Storage Object – COLLECTION -T1530

Continue reading
About the author
Vivek Rajan
Cyber Analyst

Blog

/

January 28, 2025

/
No items found.

Reimagining Your SOC: How to Achieve Proactive Network Security

Default blog imageDefault blog image

Introduction: Challenges and solutions to SOC efficiency

For Security Operation Centers (SOCs), reliance on signature or rule-based tools – solutions that are always chasing the latest update to prevent only what is already known – creates an excess of false positives. SOC analysts are therefore overwhelmed by a high volume of context-lacking alerts, with human analysts able to address only about 10% due to time and resource constraints. This forces many teams to accept the risks of addressing only a fraction of the alerts while novel threats go completely missed.

74% of practitioners are already grappling with the impact of an AI-powered threat landscape, which amplifies challenges like tool sprawl, alert fatigue, and burnout. Thus, achieving a resilient network, where SOC teams can spend most of their time getting proactive and stopping threats before they occur, feels like an unrealistic goal as attacks are growing more frequent.

Despite advancements in security technology (advanced detection systems with AI, XDR tools, SIEM aggregators, etc...), practitioners are still facing the same issues of inefficiency in their SOC, stopping them from becoming proactive. How can they select security solutions that help them achieve a proactive state without dedicating more human hours and resources to managing and triaging alerts, tuning rules, investigating false positives, and creating reports?

To overcome these obstacles, organizations must leverage security technology that is able to augment and support their teams. This can happen in the following ways:

  1. Full visibility across the modern network expanding into hybrid environments
  2. Have tools that identifies and stops novel threats autonomously, without causing downtime
  3. Apply AI-led analysis to reduce time spent on manual triage and investigation

Your current solutions might be holding you back

Traditional cybersecurity point solutions are reliant on using global threat intelligence to pattern match, determine signatures, and consequently are chasing the latest update to prevent only what is known. This means that unknown threats will evade detection until a patient zero is identified. This legacy approach to threat detection means that at least one organization needs to be ‘patient zero’, or the first victim of a novel attack before it is formally identified.

Even the point solutions that claim to use AI to enhance threat detection rely on a combination of supervised machine learning, deep learning, and transformers to

train and inform their systems. This entails shipping your company’s data out to a large data lake housed somewhere in the cloud where it gets blended with attack data from thousands of other organizations. The resulting homogenized dataset gets used to train AI systems — yours and everyone else’s — to recognize patterns of attack based on previously encountered threats.

While using AI in this way reduces the workload of security teams who would traditionally input this data by hand, it emanates the same risk – namely, that AI systems trained on known threats cannot deal with the threats of tomorrow. Ultimately, it is the unknown threats that bring down an organization.

The promise and pitfalls of XDR in today's threat landscape

Enter Extended Detection and Response (XDR): a platform approach aimed at unifying threat detection across the digital environment. XDR was developed to address the limitations of traditional, fragmented tools by stitching together data across domains, providing SOC teams with a more cohesive, enterprise-wide view of threats. This unified approach allows for improved detection of suspicious activities that might otherwise be missed in siloed systems.

However, XDR solutions still face key challenges: they often depend heavily on human validation, which can aggravate the already alarmingly high alert fatigue security analysts experience, and they remain largely reactive, focusing on detecting and responding to threats rather than helping prevent them. Additionally, XDR frequently lacks full domain coverage, relying on EDR as a foundation and are insufficient in providing native NDR capabilities and visibility, leaving critical gaps that attackers can exploit. This is reflected in the current security market, with 57% of organizations reporting that they plan to integrate network security products into their current XDR toolset[1].

Why settling is risky and how to unlock SOC efficiency

The result of these shortcomings within the security solutions market is an acceptance of inevitable risk. From false positives driving the barrage of alerts, to the siloed tooling that requires manual integration, and the lack of multi-domain visibility requiring human intervention for business context, security teams have accepted that not all alerts can be triaged or investigated.

While prioritization and processes have improved, the SOC is operating under a model that is overrun with alerts that lack context, meaning that not all of them can be investigated because there is simply too much for humans to parse through. Thus, teams accept the risk of leaving many alerts uninvestigated, rather than finding a solution to eliminate that risk altogether.

Darktrace / NETWORK is designed for your Security Operations Center to eliminate alert triage with AI-led investigations , and rapidly detect and respond to known and unknown threats. This includes the ability to scale into other environments in your infrastructure including cloud, OT, and more.

Beyond global threat intelligence: Self-Learning AI enables novel threat detection & response

Darktrace does not rely on known malware signatures, external threat intelligence, historical attack data, nor does it rely on threat trained machine learning to identify threats.

Darktrace’s unique Self-learning AI deeply understands your business environment by analyzing trillions of real-time events that understands your normal ‘pattern of life’, unique to your business. By connecting isolated incidents across your business, including third party alerts and telemetry, Darktrace / NETWORK uses anomaly chains to identify deviations from normal activity.

The benefit to this is that when we are not predefining what we are looking for, we can spot new threats, allowing end users to identify both known threats and subtle, never-before-seen indicators of malicious activity that traditional solutions may miss if they are only looking at historical attack data.

AI-led investigations empower your SOC to prioritize what matters

Anomaly detection is often criticized for yielding high false positives, as it flags deviations from expected patterns that may not necessarily indicate a real threat or issues. However, Darktrace applies an investigation engine to automate alert triage and address alert fatigue.

Darktrace’s Cyber AI Analyst revolutionizes security operations by conducting continuous, full investigations across Darktrace and third-party alerts, transforming the alert triage process. Instead of addressing only a fraction of the thousands of daily alerts, Cyber AI Analyst automatically investigates every relevant alert, freeing up your team to focus on high-priority incidents and close security gaps.

Powered by advanced machine-learning techniques, including unsupervised learning, models trained by expert analysts, and tailored security language models, Cyber AI Analyst emulates human investigation skills, testing hypotheses, analyzing data, and drawing conclusions. According to Darktrace Internal Research, Cyber AI Analyst typically provides a SOC with up to  50,000 additional hours of Level 2 analysis and written reporting annually, enriching security operations by producing high level incident alerts with full details so that human analysts can focus on Level 3 tasks.

Containing threats with Autonomous Response

Simply quarantining a device is rarely the best course of action - organizations need to be able to maintain normal operations in the face of threats and choose the right course of action. Different organizations also require tailored response functions because they have different standards and protocols across a variety of unique devices. Ultimately, a ‘one size fits all’ approach to automated response actions puts organizations at risk of disrupting business operations.

Darktrace’s Autonomous Response tailors its actions to contain abnormal behavior across users and digital assets by understanding what is normal and stopping only what is not. Unlike blanket quarantines, it delivers a bespoke approach, blocking malicious activities that deviate from regular patterns while ensuring legitimate business operations remain uninterrupted.

Darktrace offers fully customizable response actions, seamlessly integrating with your workflows through hundreds of native integrations and an open API. It eliminates the need for costly development, natively disarming threats in seconds while extending capabilities with third-party tools like firewalls, EDR, SOAR, and ITSM solutions.

Unlocking a proactive state of security

Securing the network isn’t just about responding to incidents — it’s about being proactive, adaptive, and prepared for the unexpected. The NIST Cybersecurity Framework (CSF 2.0) emphasizes this by highlighting the need for focused risk management, continuous incident response (IR) refinement, and seamless integration of these processes with your detection and response capabilities.

Despite advancements in security technology, achieving a proactive posture is still a challenge to overcome because SOC teams face inefficiencies from reliance on pattern-matching tools, which generate excessive false positives and leave many alerts unaddressed, while novel threats go undetected. If SOC teams are spending all their time investigating alerts then there is no time spent getting ahead of attacks.

Achieving proactive network resilience — a state where organizations can confidently address challenges at every stage of their security posture — requires strategically aligned solutions that work seamlessly together across the attack lifecycle.

References

1.       Market Guide for Extended Detection and Response, Gartner, 17thAugust 2023 - ID G00761828

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI