Blog
/

Thought Leadership

/
November 29, 2022

How to Cut Through Cyber Security Noise

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
29
Nov 2022
Learn how Cyber AI Analyst tackles alert fatigue by categorizing vast amounts of data into actionable security incidents for your team's review.

For cyber security experts, it’s hard enough staying on top of the latest threats and emerging attacks without having to deal with a virtual tsunami of alert noise from systems monitoring email, SaaS environments, and endpoints – in addition to IaaS cloud and on-premises networks. Unfortunately, fatigue from these demands can lead to overworking, burnout, and crucially, high employee turnover. 

The worldwide industry shortage of 3.5 million cyber security professionals only exacerbates the problem. Not only does it add pressure to the current stock of skilled and available security professionals, but it also raises the stakes for CISOs and other security leaders to find a way to cut through the alert noise while staying on ahead of threat actors who never stop innovating and applying novel malware strains and attack techniques.

Working Smarter Not Harder

One way to help with retention is to empower security teams to break away from monotony and to think creatively and leverage their expertise where it can really add value. Working smarter, rather than harder, is often easier said than done, but by employing automation and AI-driven tools to take on the heavy lifting of threat detection, investigation, and response, human teams can be given the breathing room needed to focus on long-term objectives and think more deeply about their security approaches.

It is important for security programs to continuously level up alongside evolving threat landscapes by questioning existing security operations, and this cannot be achieved during times of hand-to-hand alert combat.

When alerts are fewer, higher quality, and context-heavy, the background to each can be easily explored, whether that’s reevaluating a policy or configuration, or simply asking useful questions around the company’s broader security approach. Work done at this level empowers security teams and fosters growth.

Less is More

Business risk– or the potential impact of cyber disruption– should be the number one concern driving a security team, but lack of resources is a near-constant constraint. Reducing the volume of alerts doesn’t just mean bringing the noise floor up. You can think of the noise floor as an alert threshold: if it is too high then there are fewer alerts, but more threats may be missed, whereas if it is too low, there are high volumes of unhelpful false positives. Freeing up time for the team must not equate to ignoring alerts; it should instead mean focusing on the alerts that matter.

Darktrace’s technologies make this possible, with Darktrace DETECT™ and Cyber AI Analyst working together to address alert fatigue and burnout for security teams while strengthening an organizations’ overall security posture. Cyber AI Analyst essentially takes over the busy work from the human analysts and elevates a team’s overall decision making. Teams now operate at higher levels, as they’re not stuck in mundane alert management and humans are brought in only after the machine and AI have done the heavy lifting.

“Before AI Analyst, we were barely treading water with all of the alerts, most of which were false positives, our old systems produced daily. With AI Analyst, we’ve been able to exponentially reduce those alerts, harden our environment, and get strategic.”

Dr. Robert Spangler, the CISO and Assistant Executive Director of the New Jersey State Bar Association.

Figure 1: Billions of individual events are reduced into a critical incident for review


Imagine a scenario in which Darktrace observed around 9.6 billion events over a 28-day period. DETECT and Cyber AI Analyst might distill that huge amount of data down into just, say, 54 critical incidents, or just two per day. Here’s how:

9.6 billion events

When trying to understand the full picture, every single puzzle piece counts. That’s why Darktrace’s Self-Learning AI goes wherever your organization has data, integrating with data sources across the digital estate, including network, email, endpoints, OT, cloud, and SaaS environments. And with an open architecture, Darktrace facilitates quick and easy integrations with everything from SIEMs and SOARs to public clouds and the latest Zero Trust technologies. So, any data can become learnable, whether directly ingested or via integration.

By examining this full and contextualized data set, Self-Learning AI builds a constantly evolving understanding of what ‘normal’ looks like for the entire organization. Every connection, every email, app login, resource accessed, VM spun up, PLC reprogrammed, and more become signals from which Darktrace can learn, evaluate, and improve its understanding.

40,404 model breaches

The billions of events are analyzed by Darktrace DETECT, which uses its extensive knowledge of ‘normal’ to draw out hosts of subtle anomalies or ‘AI model breaches.’ Many of these AI model breaches will be weak indicators of threatening activity, and most will not be sufficient to individually signal a threat. For that reason, no human attention is required at this stage. Darktrace DETECT will continue to draw anomalous behaviors from the ongoing stream of events without the need for intervention. 

200 incidents

The Cyber AI Analyst takes the total list of model breaches collated by DETECT and performs the truly sophisticated work of determining distinct threat incidents. By piecing together anomalies which may, in themselves, appear harmless, the AI Analyst draws out subtle and often wide-ranging attacks, tracking their route from the initial compromise to the present moment. This creates a much shorter list of genuine threat incidents, but there is still no need for human attention at this stage.

54 critical incidents

Once it has discovered the threat incidents facing an organization, the Cyber AI Analyst begins the crucial processes of triage to determine which incidents need to be surfaced to the security team, and in what order of priority. This supplies the human team with a highly focused briefing of the most pressing threats, massively reducing their overall workload and minimizing or potentially eradicating alert fatigue. In the above example of a month with over 9.6 billion distinct events, the team are left with just two incidents to address per day. These two incidents are clearly presented with natural language-processing and all the most relevant info, including details, devices, and dates. 

“When we had other, noisier systems, we didn’t have the time to have truly in-depth discussions or conduct deep investigations, so there were fewer teachable moments for junior team members and fewer opportunities to inform our cybersecurity strategy as a whole,” Spangler said. “Now, we’re not just a better team, we’re more efficient, responsive, and informed than we’ve ever been. We’re all better cyber security professionals as a result.”

In the event of a breach, CISOs and security leaders want the full incident report, and they want it yesterday. The promise of AI is to handle specific tasks at a speed and scale that humans can’t. Going from 9.6 billion events to 54 incidents demonstrates the scale, but it’s important to consider the impact of speed here as well, as the Cyber AI Analyst works in real time, meaning all relevant events are presented in an easy to consume downloadable report available immediately upon investigation.

This isn’t a black box either; every step of the AI Analyst’s investigation process is visible to the human team. Not only can they see the relevant events and breaches that led to the incident, but if required, they can pivot into them easily with a click. If the investigation requires going all the way down to the metadata level to easily peruse the filtered events of the 9.6 billion overall signals or even to PCAP data, those are available and easy to find too.

Since DETECT and Cyber AI Analyst not only reduce alert fatigue but also simplify incident investigations, security teams feel empowered and experience less burnout. 

“We’ve been stable and have had minimal turnover since we started using AI Analyst,” Spangler said. “We’re not scrambling to keep up with noisy and time-consuming false positives, making the investigations that we undertake stimulating and– I say this cautiously– fun! Put simply, the thing we all love about this career, the virtual chess game we play with attackers, is a lot more fun when you know you’re going to win.”

Autonomous Response

Organizations that deploy Darktrace RESPOND™ can address the incidents raised by DETECT and the Cyber AI Analyst autonomously, and in mere seconds. Using the full context of the organization built up by Self-Learning AI, RESPOND takes the least disruptive measures necessary to disarm threats at machine speed. By the time the security team learns about the attack, it is already contained, continuing to save them from the hand-to-hand combat of threat fighting.

With day-to-day threat detection, response, and analysis taken care of, security teams are free to give full and sustained attention to their overall security posture. Neutralized threats may yet reveal broader security gaps and potential improvements which the team now has the time and headspace to pursue.

For example, discovering a trend that users are uploading potentially sensitive data via third-party file-sharing services might lead to a discussion about whether it should be company policy to block access to this service, reducing to zero the number of future alerts that would have been triggered by this behavior. Importantly, this wouldn’t be altering the aforementioned noise floor, but instead fundamentally altering security policies to align with the needs of the business, which could indirectly affect future alerting, as activities may subside.

As a result, practitioners find more value in their work, security teams efforts are optimized, and organizations are strengthened overall.

“We’re now focused on the items that AI Analyst alerts us to, which are always worth looking into because they either identify an activity that we need to get eyes on and/or provide us with insight into ways we can harden our network,” Spangler said. “The hardening that we’ve done has been incalculably beneficial– it’s one of the reasons we get fewer alerts, and it’s also protected us against a wide variety of threats.”

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Dan Fein
VP, Product

Based in New York, Dan joined Darktrace’s technical team in 2015, helping customers quickly achieve a complete and granular understanding of Darktrace’s product suite. Dan has a particular focus on Darktrace/Email, ensuring that it is effectively deployed in complex digital environments, and works closely with the development, marketing, sales, and technical teams. Dan holds a Bachelor’s degree in Computer Science from New York University.

Elliot Stocker
Product SME

After 2 years in a commercial role helping to deploy Darktrace across a broad range of digital environments, Elliot currently occupies the role of Product Subject Matter Expert, where he helps to articulate the value of Darktrace’s technology to customers around the world. Elliot holds a Masters degree in Data Science and Machine Learning, using this knowledge to communicate concepts around machine learning and AI in an accessible way to different audiences.

Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

November 19, 2024

/
No items found.

Darktrace Leading the Future of Network Detection and Response with Recognition from KuppingerCole

Default blog imageDefault blog image

KuppingerCole has recognized Darktrace as an overall Leader, Product Leader, Market Leader and Innovation Leader in the KuppingerCole Leadership Compass: Network Detection and Response (2024).

With the perimeter all but dissolved, Network Detection and Response (NDR) tools are quickly becoming a critical component of the security stack, as the main tool to span the modern network. NDRs connect on-premises infrastructure to cloud, remote workers, identities, SaaS applications, and IoT/OT – something not available to EDR that requires agents and isolates visibility to individual devices.

KuppingerCole Analysts AG designated Darktrace an ‘Overall Leader’ position because of our continual innovation around user-led security. Self-Learning AI together with automated triage through Cyber AI Analyst and real-time autonomous response actions have been instrumental to security teams in stopping potential threats before they become a breach. With this time saved, Darktrace is leading beyond reactive security to truly harden a network, allowing the team to spend more time in preventive security measures.

Network Detection and Response protects where others fail to reach

NDR solutions operate at the network level, deploying inside or parallel to your network to ingest raw traffic via virtual or physical sensors. This gives them unprecedented potential to identify anomalies and possible breaches in any network - far beyond simple on-prem, into dynamic virtual environments, cloud or hybrid networks, cloud applications, and even remote devices accessing the corporate network via ZTNA or VPN.

Rather than looking at processes level data, NDR can detect the lateral movement of an adversary across multiple assets by analyzing network traffic patterns which endpoint solutions may not be able to identify [1]. In the face of a growing, complex environment, organizations large and small, will benefit from using NDRs either in conjunction, or as the foundation for, their Extended Detection and Response (XDR) for a unified view that improves their overall threat detection, ease of investigation and faster response times.

Today's NDR solutions are expected to include advanced ML and artificial intelligence (AI) algorithms [1]

Traditional IDS & IPS systems are labor intensive, requiring continuous rule creation, outdated signature maintenance, and manual monitoring for false positives or incorrect actions. This is no longer viable against a higher volume and changing landscape, making NDR the natural network tool to level against these evolutions. The role of AI in NDRs is designed to meet this challenge, “to reduce both the labor need for analysis and false positives, as well as add value by improving anomaly detection and overall security posture” .

Celebrating success in leadership and innovation

Darktrace is proud to have been recognized as an NDR “Overall Leader” in KuppingerCole Analyst AG’s Leadership Compass. The report gave further recognition to Darktrace as a ‘Product Leader”, “Innovation Leader” and “Market Leader”.

Maximum scores were received for core product categories, in addition to market presence and financial strength. Particular attention was directed to our innovation. This year has seen several NDR updates via Darktrace’s ActiveAI Security Platform version 6.2 which has enhanced investigation workflows and provided new AI transparency within the toolset.

Positive scores were also received for Darktrace’s deployment ecosystem and surrounding support, minimizing the need for extraneous integrations through a unique platform architecture that connects with over 90 other vendors.

High Scores received in Darktrace’s KuppingerCole Spider Chart across Core NDR capability areas
Figure 1: High Scores received in Darktrace’s KuppingerCole Spider Chart across Core NDR capability areas

Darktrace’s pioneering AI approach sets it apart

Darktrace / NETWORK’s approach is fundamentally different to other NDRs. Continual anomaly-based detection (our Self-Learning AI), understands what is normal across each of your network entities, and then examines deviations from these behaviors rather than needing to apply static rules or ML to adversary techniques. As a result, Darktrace / NETWORK can focus on surfacing the novel threats that cannot be anticipated, whilst our proactive solutions expose gaps that can be exploited and reduce the risk of known threats.    

Across the millions of possible network events that may occur, Darktrace’s Cyber AI Analyst reduces that manual workload for SOC teams by presenting only what is most important in complete collated incidents. This accelerates SOC Level 2 analyses of incidents by 10x2, giving time back, first for any necessary response and then for preventive workflows.

Finally, when incidents begin to escalate, Darktrace can natively (or via third-party) autonomously respond and take precise actions based on a contextual understanding of both the affected assets and incident in question so that threats can be disarmed without impacting wider operations.

Within the KuppingerCole report, several standout strengths were listed:

  • Cyber AI Analyst was celebrated as a core differentiator, enhancing both visibility and investigation into critical network issues and allowing a faster response.
  • Darktrace / NETWORK was singled for its user benefits. Both a clear interface for analysts with advanced filtering and analytical tools, and efficient role-based access control (RBAC) and configuration options for administrators.
  • At the product level, Darktrace was recognized for complete network traffic analysis (NTA) capabilities allowing extensive analysis into components like application use/type, fingerprinting, source/destination communication, in addition to comprehensive protocol support across a range of network device types from IT, OT, IoT and mobiles and detailed MITRE ATT&CK mapping.
  • Finally, at the heart of it, Darktrace’s innovation was highlighted in relation to its intrinsic Self Learning AI, utilizing multiple layers of deep learning, neural networks, LLMs, NLP, Generative AI and more to understand network activity and filter it for what’s critical on an individual customer level.

Going beyond reactive security

Darktrace’s visibility and AI-enabled detection, investigation and response enable security teams to focus on hardening gaps in their network through contextual relevance & priority. Darktrace / NETWORK explicitly gives time back to security teams allowing them to focus on the bigger strategic and governance workflows that sometimes get overlooked. This is enabled through proactive solutions intrinsically connected to our NDR:

  • Darktrace / Proactive Exposure Management, which looks beyond just CVE risks to instead discover, prioritize and validate risks by business impact and how to mobilize against them early, to reduce the number of real threats security teams face.
  • Darktrace / Incident Readiness & Recovery, a solution rather than service-based approach to incident response (IR) that lets teams respond in the best way to each incident and proactively test their familiarity and effectiveness of IR workflows with sophisticated incident simulations involving their own analysts and assets.

Together, these solutions allow Darktrace / NETWORK to go beyond the traditional NDR and shift teams to a more hardened and proactive state.

Putting customers first

Customers continue to sit at the forefront of Darktrace R&D, with their emerging needs and pain points being the direct inspiration for our continued innovation.

This year Darktrace / NETWORK has protected thousands of customers against the latest attacks, from data exfil and destruction, to unapproved privilege escalation and ransomware including strains like Medusa, Qilin and AlphV BlackCat.

In each instance, Darktrace / NETWORK was able to provide a holistic lens of the anomalies present in their traffic, collated those that were important, and either responded or gave teams the ability to take targeted actions against their threats – even when adversaries pivoted. In one example of a Gootloader compromise, Darktrace ensured a SOC went from detection to recovery within 5 days, 92.8% faster than the average containment time of 69 days.

Results like these, focused on user-led security, have secured Darktrace’s position within the latest NDR Leadership Compass.

To find out more about what makes Darktrace / NETWORK special, read the full KuppingerCole report.

References

[1] Osman Celik, KuppingerCole Leadership Compass:Network Detection and Response (2024)

[2] Darktrace's AI Analyst customer fleet data

[3] https://www.ibm.com/reports/data-breach

Continue reading
About the author
Gabriel Few-Wiegratz
Product Marketing Manager

Blog

/

November 1, 2024

/

Inside the SOC

Phishing and Persistence: Darktrace’s Role in Defending Against a Sophisticated Account Takeover

Default blog imageDefault blog image

The exploitation of SaaS platforms

As businesses continue to grow and evolve, the need for sharing ideas through productivity and cloud Software-as-a-Service (SaaS) platforms is becoming increasingly crucial. However, these platforms have also become prime targets for cyber attackers.

Threat actors often exploit these widely-used services to gain unauthorized access, steal sensitive information, and disrupt business operations. The growing reliance on SaaS platforms makes them attractive entry points for cybercriminals, who use sophisticated techniques such as phishing, social engineering, and malware to compromise these systems.

Services like Microsoft 365 are regularly targeted by threat actors looking for an entry point into an organization’s environment to carry out malicious activities. Securing these platforms is crucial to protect business data and ensure operational continuity.

Darktrace / EMAIL detection of the phishing attack

In a recent case, Darktrace observed a customer in the manufacturing sector receiving a phishing email that led to a threat actor logging in and creating an email rule. Threat actors often create email rules to move emails to their inbox, avoiding detection. Additionally, Darktrace detected a spoofed domain registered by the threat actor. Despite already having access to the customer’s SaaS account, the actor seemingly registered this domain to maintain persistence on the network, allowing them to communicate with the spoofed domain and conduct further malicious activity.

Darktrace / EMAIL can help prevent compromises like this one by blocking suspicious emails as soon as they are identified. Darktrace’s AI-driven email detection and response recognizes anomalies that might indicate phishing attempts and applies mitigative actions autonomously to prevent the escalation of an attack.

Unfortunately, in this case, Darktrace was not configured in Autonomous Response mode at the time of the attack, meaning actions had to be manually applied by the customer’s security team. Had it been fully enabled, it would have held the emails, preventing them from reaching the intended recipient and stopping the attack at its inception.

However, Darktrace’s Managed Threat Detection alerted the Security Operations Center (SOC) team to the compromise, enabling them to thoroughly investigate the incident and notify the customer before further damage could occur.

The Managed Threat Detection service continuously monitors customer networks for suspicious activities that may indicate an emerging threat. When such activities are detected, alerts are sent to Darktrace’s expert Cyber Analysts for triage, significantly speeding up the remediation process.

Attack Overview

On May 2, 2024, Darktrace detected a threat actor targeting a customer in the manufacturing sector then an unusual login to their SaaS environment was observed prior to the creation of a new email rule.

Darktrace immediately identified the login as suspicious due to the rarity of the source IP (31.222.254[.]27) and ASN, coupled with the absence of multi-factor authentication (MFA), which was typically required for this account.

The new email rule was intended to mark emails as read and moved to the ‘Conversation History’ folder for inbound emails from a specific domain. The rule was named “….,,,”, likely the attacker attempting to setup their new rule with an unnoteworthy name to ensure it would not be noticed by the account’s legitimate owner. Likewise, by moving emails from a specific domain to ‘Conversation History’, a folder that is rarely used by most users, any phishing emails sent by that domain would remain undetected by the user.

Darktrace’s detection of the unusual SaaS login and subsequent creation of the new email rule “….,,,”.
Figure 1: Darktrace’s detection of the unusual SaaS login and subsequent creation of the new email rule “….,,,”.

The domain in question was identified as being newly registered and an example of a typosquat domain. Typosquatting involves registering new domains with intentional misspelling designed to convince users to visit fake, and often malicious, websites. This technique is often used in phishing campaigns to create a sense of legitimacy and trust and deceive users into providing sensitive information. In this case, the suspicious domain closely resembled several of the customer’s internal domains, indicating an attempt to impersonate the organization’s legitimate internal sites to gain the target’s trust. Furthermore, the creation of this lookalike domain suggests that the attack was highly targeted at this specific customer.

Interestingly, the threat actor registered this spoofed domain despite already having account access. This was likely intended to ensure persistence on the network without having to launch additional phishing attacks. Such use of spoofed domain could allow an attacker to maintain a foothold in their target network and escalate their malicious activities without having to regain access to the account. This persistence can be used for various purposes, including data exfiltration, spreading malware, or launching further attacks.

Following this, Darktrace detected a highly anomalous email being sent to the customer’s account from the same location as the initial unsual SaaS login. Darktrace’s anomaly-based detection is able to identify threats that human security teams and traditional signature-based methods might miss. By analyzing the expected behavior of network users, Darktrace can recognize the subtle deviations from the norm that may indicate malicious activity. Unfortunately, in this instance, without Darktrace’s Autonomous Response capability enabled, the phishing email was able to successfully reach the recipient. While Darktrace / EMAIL did suggest that the email should be held from the recipients inbox, the customer was required to manually approve it.

Despite this, the Darktrace SOC team were still able to support the customer as they were subscribed to the Managed Threat Detection service. Following the detection of the highlight anomalous activity surrounding this compromise, namely the unusual SaaS login followed by a new email rule, an alert was sent to the Darktrace SOC for immediate triage, who then contacted the customer directly urging immediate action.

Conclusion

This case underscores the need to secure SaaS platforms like Microsoft 365 against sophisticated cyber threats. As businesses increasingly rely on these platforms, they become prime targets for attackers seeking unauthorized access and disruption.

Darktrace’s anomaly-based detection and response capabilities are crucial in identifying and mitigating such threats. In this instance, Darktrace detected a phishing email that led to a threat actor logging in and creating a suspicious email rule. The actor also registered a spoofed domain to maintain persistence on the network.

Darktrace / EMAIL, with its AI-driven detection and analysis, can block suspicious emails before they reach the intended recipient, preventing attacks at their inception. Meanwhile, Darktrace’s SOC team promptly investigated the activity and alerted the customer to the compromise, enabling them to take immediate action to remediate the issue and prevent any further damage.

Credit to Vivek Rajan (Cyber Security Analyst) and Ryan Traill (Threat Content Lead).

Appendices

Darktrace Model Detections

  • SaaS / Access / Unusual External Source for SaaS Credential Use
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active
  • SaaS / Resource / Unusual Access to Delegated Resource by Non Owner
  • SaaS / Email Nexus / Unusual Login Location Following Sender Spoof
  • Compliance / Anomalous New Email Rule
  • SaaS / Compromise / Unusual Login and New Email Rule

Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

31.222.254[.]27 – IP -  Suspicious Login Endpoint

MITRE ATT&CK Mapping

Tactic – Technqiue – Sub-technique of (if applicable)

Cloud Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078.004 - T1078

Cloud Service Dashboard – DISCOVERY - T1538

Compromise Accounts - RESOURCE DEVELOPMENT - T1586

Steal Web Session Cookie - CREDENTIAL ACCESS - T1539

Outlook Rules – PERSISTENCE - T1137.005 - T1137

Continue reading
About the author
Vivek Rajan
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI