Blog
/

Inside the SOC

/
January 4, 2023

BlackMatter's Smash-and-Grab Ransom Attack Incident Analysis

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Jan 2023
Stay informed on cybersecurity trends! Read about a BlackMatters ransom attack incident and Darktrace's analysis on how RESPOND could have stopped the attack.

Only a few years ago, popular reporting announced that the days of smash-and-grab attacks were over and that a new breed of hackers were taking over with subtler, ‘low-and-slow’ tactics [1]. Although these have undoubtedly appeared, smash-and-grab have quickly become overlooked – perhaps with worrying consequences. Last year, Google saw repeated phishing campaigns using cookie theft malware and most recently, reports of hacktivists using similar techniques have been identified during the 2022 Ukraine Conflict [2 & 3]. Where did their inspiration come from? For larger APT groups such as BlackMatter, which first appeared in the summer of 2021, smash-and-grabs never went out of fashion.

This blog dissects a BlackMatter ransomware attack that hit an organization trialing Darktrace back in 2021. The case reveals what can happen when a security team does not react to high-priority alerts. 

When entire ransomware attacks can be carried out over the course of just 48 hours, there is a high risk to relying on security teams to react to detection notifications and prevent damage before the threat escalates. Although there has been hesitancy in its uptake [4], this blog also demonstrates the need for automated response solutions like Darktrace RESPOND.

The Name Game: Untangling BlackMatter, REvil, and DarkSide

Despite being a short-lived criminal organization on the surface [5], a number of parallels have now been drawn between the TTPs (Tactics, Techniques and Procedures) of the newer BlackMatter group and those of the retired REvil and DarkSide organizations [6]. 

Prior to their retirement, DarkSide and REvil were perhaps the biggest names in cyber-crime, responsible for two of last year’s most devastating ransomware attacks. Less than two weeks after the Colonial Pipeline attack, DarkSide announced it was shutting down its operation [7]. Meanwhile the FBI shutdown REvil in January 2022 after its devastating Fourth of July Kaseya attacks and a failed return in September [8]. It is now suspected that members from one or both went on to form BlackMatter.

This rebranding strategy parallels the smash-and-grab attacks these groups now increasingly employ: they make their money, and a lot of noise, and when they’re found out, they disappear before organizations or governments can pull together their threat intelligence and organize an effective response. When they return days, weeks or months later, they do so having implemented enough small changes to render themselves and their attacks unrecognizable. That is how DarkSide can become BlackMatter, and how its attacks can slip through security systems trained on previously encountered threats. 

Attack Details

In September 2021 Darktrace was monitoring a US marketing agency which became the victim of a double extortion ransomware attack that bore hallmarks of a BlackMatter operation. This began when a single domain-authenticated device joined the company’s network. This was likely a pre-infected company device being reconnected after some time offline. 

Only 15 minutes after joining, the device began SMB and ICMP scanning activities towards over 1000 different internal IPs. There was also a large spike of requests for Epmapper, which suggested an intent for RPC-based lateral movement. Although one credential was particularly prominent, multiple were used including labelled admin credentials. Given it’s unexpected nature, this recon quickly triggered a chain of DETECT/Network model breaches which ensured that Darktrace’s SOC were alerted via the Proactive Threat Notification service. Whilst SOC analysts began to triage the activity, the organization failed to act on any of the alerts they received, leaving the detected threat to take root within their digital environment. 

Shortly after, a series of C2 beaconing occurred towards an endpoint associated with Cobalt Strike [9]. This was accompanied by a range of anomalous WMI bind requests to svcctl, SecAddr and further RPC connections. These allowed the initial compromised device to quickly infect 11 other devices. With continued scanning over the next day, valuable data was soon identified. Across several transfers, 230GB of internal data was then exfiltrated from four file servers via SSH port 22. This data was then made unusable to the organization through encryption occurring via SMB Writes and Moves/Renames with the randomly generated extension ‘.qHefKSmfd’. Finally a ransom note titled ‘qHefKSmfd.README.txt’ was dropped.

This ransom note was appended with the BlackMatter ASCII logo:

Figure 1- The ASCII logo which accompanied BlackMatter’s ransom note

Although Darktrace DETECT and Cyber AI Analyst continued to provide live alerting, the actor successfully accomplished their mission.  

There are numerous reasons that an organization may fail to organize a response to a threat, (including resource shortages, out of hours attacks, and groups that simply move too fast). Without Darktrace’s RESPOND capabilities enabled, the threat actors could proceed this attack without obstacles. 

Figure 2- Cyber AI Analyst breaks down the stages of the attack [Note: this screenshot is from V5 of DETECT/Network] 

How would the attack have unfolded with RESPOND?

Armed with Darktrace’s evolving knowledge of ‘self’ for the customer’s unique digital environment, RESPOND would have activated within seconds of the first network scan, which was recognized as highly anomalous. The standard action taken here would usually involve enforcing the standard ‘pattern of life’ for the compromised device over a set time period in order to halt the anomaly while allowing the business to continue operating as normal.

RESPOND constantly re-evaluates threats as attacks unfold. Had the first stage still been successful, it would have continued to take targeted action at each corresponding stage of this attack. RESPOND models would have alerted to block the external connections to C2 servers over port 443, the outbound exfil attempts and crucially the SMB write activity over port 445 related to encryption.

As DETECT and RESPOND feed into one another, Darktrace would have continued to assess its actions as BlackMatter pivoted tactics. These actions buy back critical time for security teams that may not be in operation over the weekend, and stun the attacker into place without applying overly aggressive responses that create more problems than they solve.

Ultimately although this incident did not resolve autonomously, in response to the ransom event, Darktrace offered to enable RESPOND and set it in active mode for ransomware indicators across all client and server devices. This ensured an event like this would not occur again. 

Why does RESPOND work?

Response solutions must be accurate enough to fire only when there is a genuine threat, configurable enough to let the user stay in the driver’s seat, and intelligent enough to know the right action to take to contain only the malicious activity- without disrupting normal business operations. 

This is only possible if you can establish what ‘normal’ is for any one organization. And this is how Darktrace’s RESPOND product family ensures its actions are targeted and proportionate. By feeding off DETECT alerting which highlights subtle or large deviations across the network, cloud and SaaS, RESPOND can provide a measured response to the potential threat. This includes actions such as:

  • Enforcing the device’s ‘pattern of life’ for a given length of time 
  • Enforcing the ‘group pattern of life’ (stopping a device from doing anything its peers haven’t done in the past)
  • Blocking connections of a certain type to a certain destination
  • Logging out of a cloud account 
  • ‘Smart quarantining’ an endpoint device- maintaining access to VPNs and company’s AV solution

Conclusion 

In its report on BlackMatter [10], CISA recommended that organizations invest in network monitoring tools with the capacity to investigate anomalous activity. Picking up on unusual behavior rather than predetermined rules and signatures is an important step in fighting back against new threats. As this particular story shows, however, detection alone is not always enough. Turning on RESPOND, which takes immediate and precise action to contain threats, regardless of when and where they come in, is the best way to counter smash-and-grab attacks and protect organizations’ digital assets. There is little doubt that the threat actors behind BlackMatter will or have already returned with new names and strategies- but organizations with RESPOND will be ready for them.

Appendices

Darktrace Model Detections (in order of breach)

Those with the ‘PTN’ prefix were alerted directly to Darktrace’s 24/7 SOC team.

  • Device / ICMP Address Scan
  • Device / Suspicious SMB Scanning Activity
  • (PTN) Device / Suspicious Network Scan Activity
  • Anomalous Connection / SMB Enumeration
  • Device / Possible RPC Lateral Movement
  • Device / Active Directory Reconnaissance
  • Unusual Activity / Possible RPC Recon Activity
  • Device / Possible SMB/NTLM Reconnaissance
  • Compliance / Default Credential Usage
  • Device / New or Unusual Remote Command Execution
  • Anomalous Connection / New or Uncommon Service Control
  • Device / New or Uncommon SMB Named Pipe
  • Device / SMB Session Bruteforce
  • Device / New or Uncommon WMI Activity
  • (PTN) Device / Multiple Lateral Movement Model Breaches
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / SSL or HTTP Beacon
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Device / Anomalous SMB Followed By Multiple Model Breaches
  • Device / Anomalous RDP Followed By Multiple Model Breaches
  • Anomalous Server Activity / Rare External from Server
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Anomalous Connection / Rare External SSL Self-Signed
  • Device / Long Agent Connection to New Endpoint
  • Compliance / SMB Drive Write
  • Anomalous Connection / Unusual Admin SMB Session
  • Anomalous Connection / High Volume of New or Uncommon Service Control
  • Anomalous Connection / Unusual Admin RDP Session
  • Device / Suspicious File Writes to Multiple Hidden SMB Shares
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Compliance / SSH to Rare External Destination
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Anomalous Connection / Data Sent to Rare Domain
  • Anomalous Connection / Download and Upload
  • (PTN) Unusual Activity / Enhanced Unusual External Data Transfer
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • (PTN) Compromise / Ransomware / Suspicious SMB Activity

List of IOCs 

Reference List 

[1] https://www.designnews.com/industrial-machinery/new-age-hackers-are-ditching-smash-and-grab-techniques 

[2] https://cybernews.com/cyber-war/how-do-smash-and-grab-cyberattacks-help-ukraine-in-waging-war/

[3] https://blog.google/threat-analysis-group/phishing-campaign-targets-youtube-creators-cookie-theft-malware/

[4] https://www.ukcybersecuritycouncil.org.uk/news-insights/articles/the-benefits-of-automation-to-cyber-security/

[5] https://techcrunch.com/2021/11/03/blackmatter-ransomware-shut-down/ 

[6] https://www.trellix.com/en-us/about/newsroom/stories/research/blackmatter-ransomware-analysis-the-dark-side-returns.html

[7] https://www.nytimes.com/2021/05/14/business/darkside-pipeline-hack.html

[8] https://techcrunch.com/2022/01/14/fsb-revil-ransomware/ 

[9] https://www.virustotal.com/gui/domain/georgiaonsale.com/community

[10] https://www.cisa.gov/uscert/ncas/alerts/aa21-291a

Credit to: Andras Balogh, SOC Analyst and Gabriel Few-Wiegratz, Threat Intelligence Content Production Lead

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
The Darktrace Analyst Team
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

November 19, 2024

/
No items found.

Darktrace Leading the Future of Network Detection and Response with Recognition from KuppingerCole

Default blog imageDefault blog image

KuppingerCole has recognized Darktrace as an overall Leader, Product Leader, Market Leader and Innovation Leader in the KuppingerCole Leadership Compass: Network Detection and Response (2024).

With the perimeter all but dissolved, Network Detection and Response (NDR) tools are quickly becoming a critical component of the security stack, as the main tool to span the modern network. NDRs connect on-premises infrastructure to cloud, remote workers, identities, SaaS applications, and IoT/OT – something not available to EDR that requires agents and isolates visibility to individual devices.

KuppingerCole Analysts AG designated Darktrace an ‘Overall Leader’ position because of our continual innovation around user-led security. Self-Learning AI together with automated triage through Cyber AI Analyst and real-time autonomous response actions have been instrumental to security teams in stopping potential threats before they become a breach. With this time saved, Darktrace is leading beyond reactive security to truly harden a network, allowing the team to spend more time in preventive security measures.

Network Detection and Response protects where others fail to reach

NDR solutions operate at the network level, deploying inside or parallel to your network to ingest raw traffic via virtual or physical sensors. This gives them unprecedented potential to identify anomalies and possible breaches in any network - far beyond simple on-prem, into dynamic virtual environments, cloud or hybrid networks, cloud applications, and even remote devices accessing the corporate network via ZTNA or VPN.

Rather than looking at processes level data, NDR can detect the lateral movement of an adversary across multiple assets by analyzing network traffic patterns which endpoint solutions may not be able to identify [1]. In the face of a growing, complex environment, organizations large and small, will benefit from using NDRs either in conjunction, or as the foundation for, their Extended Detection and Response (XDR) for a unified view that improves their overall threat detection, ease of investigation and faster response times.

Today's NDR solutions are expected to include advanced ML and artificial intelligence (AI) algorithms [1]

Traditional IDS & IPS systems are labor intensive, requiring continuous rule creation, outdated signature maintenance, and manual monitoring for false positives or incorrect actions. This is no longer viable against a higher volume and changing landscape, making NDR the natural network tool to level against these evolutions. The role of AI in NDRs is designed to meet this challenge, “to reduce both the labor need for analysis and false positives, as well as add value by improving anomaly detection and overall security posture” .

Celebrating success in leadership and innovation

Darktrace is proud to have been recognized as an NDR “Overall Leader” in KuppingerCole Analyst AG’s Leadership Compass. The report gave further recognition to Darktrace as a ‘Product Leader”, “Innovation Leader” and “Market Leader”.

Maximum scores were received for core product categories, in addition to market presence and financial strength. Particular attention was directed to our innovation. This year has seen several NDR updates via Darktrace’s ActiveAI Security Platform version 6.2 which has enhanced investigation workflows and provided new AI transparency within the toolset.

Positive scores were also received for Darktrace’s deployment ecosystem and surrounding support, minimizing the need for extraneous integrations through a unique platform architecture that connects with over 90 other vendors.

High Scores received in Darktrace’s KuppingerCole Spider Chart across Core NDR capability areas
Figure 1: High Scores received in Darktrace’s KuppingerCole Spider Chart across Core NDR capability areas

Darktrace’s pioneering AI approach sets it apart

Darktrace / NETWORK’s approach is fundamentally different to other NDRs. Continual anomaly-based detection (our Self-Learning AI), understands what is normal across each of your network entities, and then examines deviations from these behaviors rather than needing to apply static rules or ML to adversary techniques. As a result, Darktrace / NETWORK can focus on surfacing the novel threats that cannot be anticipated, whilst our proactive solutions expose gaps that can be exploited and reduce the risk of known threats.    

Across the millions of possible network events that may occur, Darktrace’s Cyber AI Analyst reduces that manual workload for SOC teams by presenting only what is most important in complete collated incidents. This accelerates SOC Level 2 analyses of incidents by 10x2, giving time back, first for any necessary response and then for preventive workflows.

Finally, when incidents begin to escalate, Darktrace can natively (or via third-party) autonomously respond and take precise actions based on a contextual understanding of both the affected assets and incident in question so that threats can be disarmed without impacting wider operations.

Within the KuppingerCole report, several standout strengths were listed:

  • Cyber AI Analyst was celebrated as a core differentiator, enhancing both visibility and investigation into critical network issues and allowing a faster response.
  • Darktrace / NETWORK was singled for its user benefits. Both a clear interface for analysts with advanced filtering and analytical tools, and efficient role-based access control (RBAC) and configuration options for administrators.
  • At the product level, Darktrace was recognized for complete network traffic analysis (NTA) capabilities allowing extensive analysis into components like application use/type, fingerprinting, source/destination communication, in addition to comprehensive protocol support across a range of network device types from IT, OT, IoT and mobiles and detailed MITRE ATT&CK mapping.
  • Finally, at the heart of it, Darktrace’s innovation was highlighted in relation to its intrinsic Self Learning AI, utilizing multiple layers of deep learning, neural networks, LLMs, NLP, Generative AI and more to understand network activity and filter it for what’s critical on an individual customer level.

Going beyond reactive security

Darktrace’s visibility and AI-enabled detection, investigation and response enable security teams to focus on hardening gaps in their network through contextual relevance & priority. Darktrace / NETWORK explicitly gives time back to security teams allowing them to focus on the bigger strategic and governance workflows that sometimes get overlooked. This is enabled through proactive solutions intrinsically connected to our NDR:

  • Darktrace / Proactive Exposure Management, which looks beyond just CVE risks to instead discover, prioritize and validate risks by business impact and how to mobilize against them early, to reduce the number of real threats security teams face.
  • Darktrace / Incident Readiness & Recovery, a solution rather than service-based approach to incident response (IR) that lets teams respond in the best way to each incident and proactively test their familiarity and effectiveness of IR workflows with sophisticated incident simulations involving their own analysts and assets.

Together, these solutions allow Darktrace / NETWORK to go beyond the traditional NDR and shift teams to a more hardened and proactive state.

Putting customers first

Customers continue to sit at the forefront of Darktrace R&D, with their emerging needs and pain points being the direct inspiration for our continued innovation.

This year Darktrace / NETWORK has protected thousands of customers against the latest attacks, from data exfil and destruction, to unapproved privilege escalation and ransomware including strains like Medusa, Qilin and AlphV BlackCat.

In each instance, Darktrace / NETWORK was able to provide a holistic lens of the anomalies present in their traffic, collated those that were important, and either responded or gave teams the ability to take targeted actions against their threats – even when adversaries pivoted. In one example of a Gootloader compromise, Darktrace ensured a SOC went from detection to recovery within 5 days, 92.8% faster than the average containment time of 69 days.

Results like these, focused on user-led security, have secured Darktrace’s position within the latest NDR Leadership Compass.

To find out more about what makes Darktrace / NETWORK special, read the full KuppingerCole report.

References

[1] Osman Celik, KuppingerCole Leadership Compass:Network Detection and Response (2024)

[2] Darktrace's AI Analyst customer fleet data

[3] https://www.ibm.com/reports/data-breach

Continue reading
About the author
Gabriel Few-Wiegratz
Product Marketing Manager

Blog

/

November 1, 2024

/

Inside the SOC

Phishing and Persistence: Darktrace’s Role in Defending Against a Sophisticated Account Takeover

Default blog imageDefault blog image

The exploitation of SaaS platforms

As businesses continue to grow and evolve, the need for sharing ideas through productivity and cloud Software-as-a-Service (SaaS) platforms is becoming increasingly crucial. However, these platforms have also become prime targets for cyber attackers.

Threat actors often exploit these widely-used services to gain unauthorized access, steal sensitive information, and disrupt business operations. The growing reliance on SaaS platforms makes them attractive entry points for cybercriminals, who use sophisticated techniques such as phishing, social engineering, and malware to compromise these systems.

Services like Microsoft 365 are regularly targeted by threat actors looking for an entry point into an organization’s environment to carry out malicious activities. Securing these platforms is crucial to protect business data and ensure operational continuity.

Darktrace / EMAIL detection of the phishing attack

In a recent case, Darktrace observed a customer in the manufacturing sector receiving a phishing email that led to a threat actor logging in and creating an email rule. Threat actors often create email rules to move emails to their inbox, avoiding detection. Additionally, Darktrace detected a spoofed domain registered by the threat actor. Despite already having access to the customer’s SaaS account, the actor seemingly registered this domain to maintain persistence on the network, allowing them to communicate with the spoofed domain and conduct further malicious activity.

Darktrace / EMAIL can help prevent compromises like this one by blocking suspicious emails as soon as they are identified. Darktrace’s AI-driven email detection and response recognizes anomalies that might indicate phishing attempts and applies mitigative actions autonomously to prevent the escalation of an attack.

Unfortunately, in this case, Darktrace was not configured in Autonomous Response mode at the time of the attack, meaning actions had to be manually applied by the customer’s security team. Had it been fully enabled, it would have held the emails, preventing them from reaching the intended recipient and stopping the attack at its inception.

However, Darktrace’s Managed Threat Detection alerted the Security Operations Center (SOC) team to the compromise, enabling them to thoroughly investigate the incident and notify the customer before further damage could occur.

The Managed Threat Detection service continuously monitors customer networks for suspicious activities that may indicate an emerging threat. When such activities are detected, alerts are sent to Darktrace’s expert Cyber Analysts for triage, significantly speeding up the remediation process.

Attack Overview

On May 2, 2024, Darktrace detected a threat actor targeting a customer in the manufacturing sector then an unusual login to their SaaS environment was observed prior to the creation of a new email rule.

Darktrace immediately identified the login as suspicious due to the rarity of the source IP (31.222.254[.]27) and ASN, coupled with the absence of multi-factor authentication (MFA), which was typically required for this account.

The new email rule was intended to mark emails as read and moved to the ‘Conversation History’ folder for inbound emails from a specific domain. The rule was named “….,,,”, likely the attacker attempting to setup their new rule with an unnoteworthy name to ensure it would not be noticed by the account’s legitimate owner. Likewise, by moving emails from a specific domain to ‘Conversation History’, a folder that is rarely used by most users, any phishing emails sent by that domain would remain undetected by the user.

Darktrace’s detection of the unusual SaaS login and subsequent creation of the new email rule “….,,,”.
Figure 1: Darktrace’s detection of the unusual SaaS login and subsequent creation of the new email rule “….,,,”.

The domain in question was identified as being newly registered and an example of a typosquat domain. Typosquatting involves registering new domains with intentional misspelling designed to convince users to visit fake, and often malicious, websites. This technique is often used in phishing campaigns to create a sense of legitimacy and trust and deceive users into providing sensitive information. In this case, the suspicious domain closely resembled several of the customer’s internal domains, indicating an attempt to impersonate the organization’s legitimate internal sites to gain the target’s trust. Furthermore, the creation of this lookalike domain suggests that the attack was highly targeted at this specific customer.

Interestingly, the threat actor registered this spoofed domain despite already having account access. This was likely intended to ensure persistence on the network without having to launch additional phishing attacks. Such use of spoofed domain could allow an attacker to maintain a foothold in their target network and escalate their malicious activities without having to regain access to the account. This persistence can be used for various purposes, including data exfiltration, spreading malware, or launching further attacks.

Following this, Darktrace detected a highly anomalous email being sent to the customer’s account from the same location as the initial unsual SaaS login. Darktrace’s anomaly-based detection is able to identify threats that human security teams and traditional signature-based methods might miss. By analyzing the expected behavior of network users, Darktrace can recognize the subtle deviations from the norm that may indicate malicious activity. Unfortunately, in this instance, without Darktrace’s Autonomous Response capability enabled, the phishing email was able to successfully reach the recipient. While Darktrace / EMAIL did suggest that the email should be held from the recipients inbox, the customer was required to manually approve it.

Despite this, the Darktrace SOC team were still able to support the customer as they were subscribed to the Managed Threat Detection service. Following the detection of the highlight anomalous activity surrounding this compromise, namely the unusual SaaS login followed by a new email rule, an alert was sent to the Darktrace SOC for immediate triage, who then contacted the customer directly urging immediate action.

Conclusion

This case underscores the need to secure SaaS platforms like Microsoft 365 against sophisticated cyber threats. As businesses increasingly rely on these platforms, they become prime targets for attackers seeking unauthorized access and disruption.

Darktrace’s anomaly-based detection and response capabilities are crucial in identifying and mitigating such threats. In this instance, Darktrace detected a phishing email that led to a threat actor logging in and creating a suspicious email rule. The actor also registered a spoofed domain to maintain persistence on the network.

Darktrace / EMAIL, with its AI-driven detection and analysis, can block suspicious emails before they reach the intended recipient, preventing attacks at their inception. Meanwhile, Darktrace’s SOC team promptly investigated the activity and alerted the customer to the compromise, enabling them to take immediate action to remediate the issue and prevent any further damage.

Credit to Vivek Rajan (Cyber Security Analyst) and Ryan Traill (Threat Content Lead).

Appendices

Darktrace Model Detections

  • SaaS / Access / Unusual External Source for SaaS Credential Use
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active
  • SaaS / Resource / Unusual Access to Delegated Resource by Non Owner
  • SaaS / Email Nexus / Unusual Login Location Following Sender Spoof
  • Compliance / Anomalous New Email Rule
  • SaaS / Compromise / Unusual Login and New Email Rule

Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

31.222.254[.]27 – IP -  Suspicious Login Endpoint

MITRE ATT&CK Mapping

Tactic – Technqiue – Sub-technique of (if applicable)

Cloud Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078.004 - T1078

Cloud Service Dashboard – DISCOVERY - T1538

Compromise Accounts - RESOURCE DEVELOPMENT - T1586

Steal Web Session Cookie - CREDENTIAL ACCESS - T1539

Outlook Rules – PERSISTENCE - T1137.005 - T1137

Continue reading
About the author
Vivek Rajan
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI