Blog
/

Thought Leadership

/
August 15, 2022

Modern Cyber War: Our Role in New Cyber-Attacks

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
15
Aug 2022
Explore the roles we all play in the modern cyber war and how you can protect your digital assets in an evolving threat landscape.

Cyber warfare is increasingly being conducted outside of centralized military or government efforts. In Ukraine, without direct government supervision, thousands of private individuals and organizations are involving themselves in the cyber-war against Russia. Yurii Shchyhol is head of Ukraine’s State Service of Special Communications and Information Protection. Speaking to Politico, he commends a group of “more than 270,000 volunteers who are self-coordinating their efforts and who can decide, plan, and execute any strikes on the Russian cyber infrastructure without Ukraine getting involved in any shape or form.”

‘Hacktivists’ have existed since the 1990s, but the term seems ill-suited to the scale and approach Shchyhol is describing. They might instead be labelled an auxiliary cyber force, playing a supportive role in a larger military effort. Shchyhol himself calls them “an army”. 

Open-source warfare

In the modern cyber landscape, anyone with a computer and a basic skill set can contribute to a war. Depending on who and perhaps where you are, this fact is inspiring, concerning, or a little of both. The challenge of distinguishing between official nation-state attacks and hacktivists raises certain issues, making it possible, for instance, for nation-states to conduct devastating attacks against critical national infrastructure from behind a mask of proxy criminal organizations. The ties between nation states and these organizations may be suspected, but any accusations are rarely confirmed. 

The converse problem is seen when idealistic individual actors launch provocative attacks with the potential to stoke tensions between nation states. Recent DDoS and defacement attacks against Taiwanese government sites and businesses are largely being attributed to Chinese hacktivists, but with the perpetrators unidentified, these attacks remain a concerning question mark and do little to ameliorate sharply rising tensions. A spokesperson for Taiwan’s ruling party has already said in a statement that these attacks are “unilaterally raising the situation in the Taiwan Strait.” Official Taiwanese websites, like that of the Presidential Office, the Ministry of National Defense, and a municipal Environment Protection Bureau have all been targeted, the latter defaced with five Chinese national flags. 

A spate of similar defacements preceded Russia’s February invasion of Ukraine, with more than a dozen Ukrainian national websites made to display threats like, “be afraid and expect the worst”. Once again, the perpetrators of this attack remained unconfirmed, with Ukrainian government institutions accusing the Russian Federation, and Russia denying all involvement. The degree to which modern war efforts can be influenced by – or concealed behind – individual threat actors is a new and disconcerting symptom of the modern cyber landscape. There are, however, more official ways in which cyber warfare has moved beyond government and military organizations as well.

Calling in a private cavalry

Just 15 months after it was opened by President Volodymyr Zelensky, the UA30 Cyber Center in Ukraine lies largely empty. It is located in an unsafe part of the war-torn country, and its operations have had to be moved elsewhere. In the time between its opening and Russia’s invasion in February, however, the center was able to host more than 100 cyber security training sessions. These sessions, which involved realistic cyber-attack simulations, hackathons, and other competitions, were attended by some military operators, but also by large numbers of civilian contractors and private sector representatives. Their attendance was part of an intentional and significant effort to involve the private sector in Ukraine’s cyber defense efforts. 

Shchyhol explains, “a lot of private sector IT cyber security experts are either directly serving in the Armed Forces of Ukraine or my State Service or otherwise are indirectly involved in fighting against cyber-attacks.” This is the realization of the UA30 Cyber Center’s aim: using crucial assistance and expertise from the private sector in national cyber-defense efforts, and bolstering the security of those organizations on which Ukraine’s critical national infrastructure depends. As we have seen with attacks against Ukrainian telecom and internet providers, organizations operating the infrastructure which underpins a population’s daily life are often the first – and most appealing – targets for attackers looking to create disorder within a nation. 

It is not only Ukraine’s own private sector which is lending a hand. International organizations like SpaceX and Amazon have contributed to Ukraine’s efforts by providing technology and infrastructure, as well as their own expertise and services. In its report on Early Lessons from the Cyber War, Microsoft suggests that “defense against a military invasion now requires for most countries the ability to disperse and distribute digital operations and data assets across borders and into other countries”. With cloud services provided by Amazon, Microsoft and others, and data now hosted across Europe, Ukraine is managing to do just that. Like its army of guerilla cyber-fighters, the involvement of private organizations is dispersing and bolstering Ukraine’s war effort.

The new home front

Beyond these direct contributions, however, Shchyhol also notes those private sector organizations supporting the cyber-war “indirectly”. These indirect efforts have been a focus of US government statements on cyber security since the beginning of the conflict. A statement from President Biden in March read, “I urge our private sector partners to harden your cyber defenses immediately”, a message which has been repeated and reinforced by CISA.  

The great responsibility which private organizations have for critical national infrastructure has been highlighted in attacks like that on Colonial Pipeline last year, but organizations in every industry can offer opportunities for nation-state attackers. When more organizations are sufficiently prepared for cyber-attacks, the nation as a whole becomes stronger. 

In its report, Microsoft calls for “a common strategy” to thwart modern cyber-threats, which includes the need for greater public and private collaboration and advances in digital technology, Artificial Intelligence (AI), and data. By adopting stronger defenses, and employing well-suited emerging AI technologies, organizations can accelerate the detection and prevention of threats, and contribute to national security in the face of constantly developing international cyber-threats. 

When cyber-attackers are provided with funding, coordination, and thorough threat security intelligence, they can create scores of never-before-seen attacks, which circumvent pre-established security rules and avoid detection. As attackers develop their approach, so must defenders - not just by employing the latest technologies, but by embracing the changes in defensive strategy which those technologies enable. Defenders need to pivot away from focusing on patterns and predictions, and concentrate on understanding the landscapes and ‘normal’ operations of their digital environments. With this approach they can harden attack paths, visualize their internet-facing attack surface, detect the smallest deviations from ‘normal’, and disrupt attackers before damage is done.  

For private sector organizations, auxiliary cyber forces, and hacktivists alike, focusing on defensive rather than offensive action will be the surest way to win the battle and the war. 

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Marcus Fowler
CEO of Darktrace Federal and SVP of Strategic Engagements and Threats

Marcus Fowler is the CEO of Darktrace Federal, working to help defend the U.S. Department of Defense (DoD), the Intelligence Community (IC), and Federal Civilian Agencies against cyber disruption and strengthen their defenses with complete AI-powered cybersecurity solutions. Marcus is a seasoned cybersecurity professional, with expertise on emerging and next generation cyber threats, trends, and conflicts. Marcus also serves as the SVP of Strategic Engagements and Threats at Darktrace, working closely with senior security leaders across industries on innovative cybersecurity strategy and business resilience.  

Previously, Marcus spent 15 years at the Central Intelligence Agency developing global cyber operations and technical strategies, leading cyber efforts with various US Intelligence Community elements and global partners. Prior to serving at the CIA, Marcus was an officer in the United States Marine Corps. Marcus has an engineering degree from the United States Naval Academy and a master's degree in international security studies from The Fletcher School. He also completed Harvard Business School’s Executive Education Advanced Management Program.

Sam Corbett
Content Marketing Executive
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

November 19, 2024

/
No items found.

Darktrace Leading the Future of Network Detection and Response with Recognition from KuppingerCole

Default blog imageDefault blog image

KuppingerCole has recognized Darktrace as an overall Leader, Product Leader, Market Leader and Innovation Leader in the KuppingerCole Leadership Compass: Network Detection and Response (2024).

With the perimeter all but dissolved, Network Detection and Response (NDR) tools are quickly becoming a critical component of the security stack, as the main tool to span the modern network. NDRs connect on-premises infrastructure to cloud, remote workers, identities, SaaS applications, and IoT/OT – something not available to EDR that requires agents and isolates visibility to individual devices.

KuppingerCole Analysts AG designated Darktrace an ‘Overall Leader’ position because of our continual innovation around user-led security. Self-Learning AI together with automated triage through Cyber AI Analyst and real-time autonomous response actions have been instrumental to security teams in stopping potential threats before they become a breach. With this time saved, Darktrace is leading beyond reactive security to truly harden a network, allowing the team to spend more time in preventive security measures.

Network Detection and Response protects where others fail to reach

NDR solutions operate at the network level, deploying inside or parallel to your network to ingest raw traffic via virtual or physical sensors. This gives them unprecedented potential to identify anomalies and possible breaches in any network - far beyond simple on-prem, into dynamic virtual environments, cloud or hybrid networks, cloud applications, and even remote devices accessing the corporate network via ZTNA or VPN.

Rather than looking at processes level data, NDR can detect the lateral movement of an adversary across multiple assets by analyzing network traffic patterns which endpoint solutions may not be able to identify [1]. In the face of a growing, complex environment, organizations large and small, will benefit from using NDRs either in conjunction, or as the foundation for, their Extended Detection and Response (XDR) for a unified view that improves their overall threat detection, ease of investigation and faster response times.

Today's NDR solutions are expected to include advanced ML and artificial intelligence (AI) algorithms [1]

Traditional IDS & IPS systems are labor intensive, requiring continuous rule creation, outdated signature maintenance, and manual monitoring for false positives or incorrect actions. This is no longer viable against a higher volume and changing landscape, making NDR the natural network tool to level against these evolutions. The role of AI in NDRs is designed to meet this challenge, “to reduce both the labor need for analysis and false positives, as well as add value by improving anomaly detection and overall security posture” .

Celebrating success in leadership and innovation

Darktrace is proud to have been recognized as an NDR “Overall Leader” in KuppingerCole Analyst AG’s Leadership Compass. The report gave further recognition to Darktrace as a ‘Product Leader”, “Innovation Leader” and “Market Leader”.

Maximum scores were received for core product categories, in addition to market presence and financial strength. Particular attention was directed to our innovation. This year has seen several NDR updates via Darktrace’s ActiveAI Security Platform version 6.2 which has enhanced investigation workflows and provided new AI transparency within the toolset.

Positive scores were also received for Darktrace’s deployment ecosystem and surrounding support, minimizing the need for extraneous integrations through a unique platform architecture that connects with over 90 other vendors.

High Scores received in Darktrace’s KuppingerCole Spider Chart across Core NDR capability areas
Figure 1: High Scores received in Darktrace’s KuppingerCole Spider Chart across Core NDR capability areas

Darktrace’s pioneering AI approach sets it apart

Darktrace / NETWORK’s approach is fundamentally different to other NDRs. Continual anomaly-based detection (our Self-Learning AI), understands what is normal across each of your network entities, and then examines deviations from these behaviors rather than needing to apply static rules or ML to adversary techniques. As a result, Darktrace / NETWORK can focus on surfacing the novel threats that cannot be anticipated, whilst our proactive solutions expose gaps that can be exploited and reduce the risk of known threats.    

Across the millions of possible network events that may occur, Darktrace’s Cyber AI Analyst reduces that manual workload for SOC teams by presenting only what is most important in complete collated incidents. This accelerates SOC Level 2 analyses of incidents by 10x2, giving time back, first for any necessary response and then for preventive workflows.

Finally, when incidents begin to escalate, Darktrace can natively (or via third-party) autonomously respond and take precise actions based on a contextual understanding of both the affected assets and incident in question so that threats can be disarmed without impacting wider operations.

Within the KuppingerCole report, several standout strengths were listed:

  • Cyber AI Analyst was celebrated as a core differentiator, enhancing both visibility and investigation into critical network issues and allowing a faster response.
  • Darktrace / NETWORK was singled for its user benefits. Both a clear interface for analysts with advanced filtering and analytical tools, and efficient role-based access control (RBAC) and configuration options for administrators.
  • At the product level, Darktrace was recognized for complete network traffic analysis (NTA) capabilities allowing extensive analysis into components like application use/type, fingerprinting, source/destination communication, in addition to comprehensive protocol support across a range of network device types from IT, OT, IoT and mobiles and detailed MITRE ATT&CK mapping.
  • Finally, at the heart of it, Darktrace’s innovation was highlighted in relation to its intrinsic Self Learning AI, utilizing multiple layers of deep learning, neural networks, LLMs, NLP, Generative AI and more to understand network activity and filter it for what’s critical on an individual customer level.

Going beyond reactive security

Darktrace’s visibility and AI-enabled detection, investigation and response enable security teams to focus on hardening gaps in their network through contextual relevance & priority. Darktrace / NETWORK explicitly gives time back to security teams allowing them to focus on the bigger strategic and governance workflows that sometimes get overlooked. This is enabled through proactive solutions intrinsically connected to our NDR:

  • Darktrace / Proactive Exposure Management, which looks beyond just CVE risks to instead discover, prioritize and validate risks by business impact and how to mobilize against them early, to reduce the number of real threats security teams face.
  • Darktrace / Incident Readiness & Recovery, a solution rather than service-based approach to incident response (IR) that lets teams respond in the best way to each incident and proactively test their familiarity and effectiveness of IR workflows with sophisticated incident simulations involving their own analysts and assets.

Together, these solutions allow Darktrace / NETWORK to go beyond the traditional NDR and shift teams to a more hardened and proactive state.

Putting customers first

Customers continue to sit at the forefront of Darktrace R&D, with their emerging needs and pain points being the direct inspiration for our continued innovation.

This year Darktrace / NETWORK has protected thousands of customers against the latest attacks, from data exfil and destruction, to unapproved privilege escalation and ransomware including strains like Medusa, Qilin and AlphV BlackCat.

In each instance, Darktrace / NETWORK was able to provide a holistic lens of the anomalies present in their traffic, collated those that were important, and either responded or gave teams the ability to take targeted actions against their threats – even when adversaries pivoted. In one example of a Gootloader compromise, Darktrace ensured a SOC went from detection to recovery within 5 days, 92.8% faster than the average containment time of 69 days.

Results like these, focused on user-led security, have secured Darktrace’s position within the latest NDR Leadership Compass.

To find out more about what makes Darktrace / NETWORK special, read the full KuppingerCole report.

References

[1] Osman Celik, KuppingerCole Leadership Compass:Network Detection and Response (2024)

[2] Darktrace's AI Analyst customer fleet data

[3] https://www.ibm.com/reports/data-breach

Continue reading
About the author
Gabriel Few-Wiegratz
Product Marketing Manager

Blog

/

November 1, 2024

/

Inside the SOC

Phishing and Persistence: Darktrace’s Role in Defending Against a Sophisticated Account Takeover

Default blog imageDefault blog image

The exploitation of SaaS platforms

As businesses continue to grow and evolve, the need for sharing ideas through productivity and cloud Software-as-a-Service (SaaS) platforms is becoming increasingly crucial. However, these platforms have also become prime targets for cyber attackers.

Threat actors often exploit these widely-used services to gain unauthorized access, steal sensitive information, and disrupt business operations. The growing reliance on SaaS platforms makes them attractive entry points for cybercriminals, who use sophisticated techniques such as phishing, social engineering, and malware to compromise these systems.

Services like Microsoft 365 are regularly targeted by threat actors looking for an entry point into an organization’s environment to carry out malicious activities. Securing these platforms is crucial to protect business data and ensure operational continuity.

Darktrace / EMAIL detection of the phishing attack

In a recent case, Darktrace observed a customer in the manufacturing sector receiving a phishing email that led to a threat actor logging in and creating an email rule. Threat actors often create email rules to move emails to their inbox, avoiding detection. Additionally, Darktrace detected a spoofed domain registered by the threat actor. Despite already having access to the customer’s SaaS account, the actor seemingly registered this domain to maintain persistence on the network, allowing them to communicate with the spoofed domain and conduct further malicious activity.

Darktrace / EMAIL can help prevent compromises like this one by blocking suspicious emails as soon as they are identified. Darktrace’s AI-driven email detection and response recognizes anomalies that might indicate phishing attempts and applies mitigative actions autonomously to prevent the escalation of an attack.

Unfortunately, in this case, Darktrace was not configured in Autonomous Response mode at the time of the attack, meaning actions had to be manually applied by the customer’s security team. Had it been fully enabled, it would have held the emails, preventing them from reaching the intended recipient and stopping the attack at its inception.

However, Darktrace’s Managed Threat Detection alerted the Security Operations Center (SOC) team to the compromise, enabling them to thoroughly investigate the incident and notify the customer before further damage could occur.

The Managed Threat Detection service continuously monitors customer networks for suspicious activities that may indicate an emerging threat. When such activities are detected, alerts are sent to Darktrace’s expert Cyber Analysts for triage, significantly speeding up the remediation process.

Attack Overview

On May 2, 2024, Darktrace detected a threat actor targeting a customer in the manufacturing sector then an unusual login to their SaaS environment was observed prior to the creation of a new email rule.

Darktrace immediately identified the login as suspicious due to the rarity of the source IP (31.222.254[.]27) and ASN, coupled with the absence of multi-factor authentication (MFA), which was typically required for this account.

The new email rule was intended to mark emails as read and moved to the ‘Conversation History’ folder for inbound emails from a specific domain. The rule was named “….,,,”, likely the attacker attempting to setup their new rule with an unnoteworthy name to ensure it would not be noticed by the account’s legitimate owner. Likewise, by moving emails from a specific domain to ‘Conversation History’, a folder that is rarely used by most users, any phishing emails sent by that domain would remain undetected by the user.

Darktrace’s detection of the unusual SaaS login and subsequent creation of the new email rule “….,,,”.
Figure 1: Darktrace’s detection of the unusual SaaS login and subsequent creation of the new email rule “….,,,”.

The domain in question was identified as being newly registered and an example of a typosquat domain. Typosquatting involves registering new domains with intentional misspelling designed to convince users to visit fake, and often malicious, websites. This technique is often used in phishing campaigns to create a sense of legitimacy and trust and deceive users into providing sensitive information. In this case, the suspicious domain closely resembled several of the customer’s internal domains, indicating an attempt to impersonate the organization’s legitimate internal sites to gain the target’s trust. Furthermore, the creation of this lookalike domain suggests that the attack was highly targeted at this specific customer.

Interestingly, the threat actor registered this spoofed domain despite already having account access. This was likely intended to ensure persistence on the network without having to launch additional phishing attacks. Such use of spoofed domain could allow an attacker to maintain a foothold in their target network and escalate their malicious activities without having to regain access to the account. This persistence can be used for various purposes, including data exfiltration, spreading malware, or launching further attacks.

Following this, Darktrace detected a highly anomalous email being sent to the customer’s account from the same location as the initial unsual SaaS login. Darktrace’s anomaly-based detection is able to identify threats that human security teams and traditional signature-based methods might miss. By analyzing the expected behavior of network users, Darktrace can recognize the subtle deviations from the norm that may indicate malicious activity. Unfortunately, in this instance, without Darktrace’s Autonomous Response capability enabled, the phishing email was able to successfully reach the recipient. While Darktrace / EMAIL did suggest that the email should be held from the recipients inbox, the customer was required to manually approve it.

Despite this, the Darktrace SOC team were still able to support the customer as they were subscribed to the Managed Threat Detection service. Following the detection of the highlight anomalous activity surrounding this compromise, namely the unusual SaaS login followed by a new email rule, an alert was sent to the Darktrace SOC for immediate triage, who then contacted the customer directly urging immediate action.

Conclusion

This case underscores the need to secure SaaS platforms like Microsoft 365 against sophisticated cyber threats. As businesses increasingly rely on these platforms, they become prime targets for attackers seeking unauthorized access and disruption.

Darktrace’s anomaly-based detection and response capabilities are crucial in identifying and mitigating such threats. In this instance, Darktrace detected a phishing email that led to a threat actor logging in and creating a suspicious email rule. The actor also registered a spoofed domain to maintain persistence on the network.

Darktrace / EMAIL, with its AI-driven detection and analysis, can block suspicious emails before they reach the intended recipient, preventing attacks at their inception. Meanwhile, Darktrace’s SOC team promptly investigated the activity and alerted the customer to the compromise, enabling them to take immediate action to remediate the issue and prevent any further damage.

Credit to Vivek Rajan (Cyber Security Analyst) and Ryan Traill (Threat Content Lead).

Appendices

Darktrace Model Detections

  • SaaS / Access / Unusual External Source for SaaS Credential Use
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active
  • SaaS / Resource / Unusual Access to Delegated Resource by Non Owner
  • SaaS / Email Nexus / Unusual Login Location Following Sender Spoof
  • Compliance / Anomalous New Email Rule
  • SaaS / Compromise / Unusual Login and New Email Rule

Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

31.222.254[.]27 – IP -  Suspicious Login Endpoint

MITRE ATT&CK Mapping

Tactic – Technqiue – Sub-technique of (if applicable)

Cloud Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078.004 - T1078

Cloud Service Dashboard – DISCOVERY - T1538

Compromise Accounts - RESOURCE DEVELOPMENT - T1586

Steal Web Session Cookie - CREDENTIAL ACCESS - T1539

Outlook Rules – PERSISTENCE - T1137.005 - T1137

Continue reading
About the author
Vivek Rajan
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI