Blog
/

Ransomware

/
February 13, 2022

REvil's Ransomware Business Model & Staying Ahead with AI

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Feb 2022
Learn more about REvil by exploring a REvil ransomware campaign discovered by Darktrace's AI. Find out how the recent arrests impact cyber security.

REvil, also known as Sodinokibi, is a Ransomware-as-a-Service (RaaS) gang responsible for one of the largest ransomware attacks in history. On 14th January 2022, Russia announced it had arrested 14 members of the criminal gang. The move came at the request of the US authorities, who have worked hard with international partners to crack down on the gang. Last year, multiple high-profile attacks were attributed to the REvil group, including the JBS ransomware and Kaseya supply chain incidents.

The arrests are certainly a victory for western law enforcement agencies, and follows November’s announcement from Europol that seven arrests of REvil affiliates had been made in the preceding months. The question is: to what extent will these arrests disrupt the gang’s operations, and for how long?

Early indications from security researchers at ReversingLabs indicates REvil activity has been unaffected. Statistics on REvil implants two weeks after the Russian arrests are unchanged, and if anything indicate a modest increase.

This continued activity implies one of two scenarios:

  • The flurry of arrests have only impacted ‘middle men’ within the criminal gang’s hierarchy
  • REvil’s ransomware-as-a-service model is resilient enough to survive disruption from law enforcement

Both scenarios are worrisome to those who may fall prey to ransomware gangs, and the reality is likely to be a far more complex mixture of these and other factors. The crackdown on ransomware is long overdue, but the battle is likely to be a long one. Law enforcement agencies need to disrupt the business model to such an extent that it no longer becomes profitable or favorable to be in the ransomware business, and this is likely to take months or even years.

So as the crackdown on ransomware plays out on the biggest stage, what comfort, if any, can security teams take from recent events?

Staying ahead of the evolving RaaS model with AI

A joint report on ransomware issued recently by the FBI, CISA, the NCSC, the ACSC and the NSA highlighted key trends over the past year:

  • RaaS has become increasingly professionalized, with business models and processes now well established.
  • The business model complicates attribution because there are complex networks of developers, affiliates, and freelancers.
  • Ransomware groups are sharing victim information with each other, diversifying the threat to targeted organizations.

In summary, the report illuminates how ransomware gangs have become increasingly adaptable when it comes to evading law enforcement and maximizing profit from ransom payments. Multiple groups have faded away, or retired, only to reappear under a different name and with a slightly updated playbook. The tactics, techniques, and procedures (TTPs) differ from victim to victim, largely because attacks are conducted by different ransomware operators and affiliates.

This is troubling for law enforcement bodies trying to crack down on the individuals behind these attacks. When a RaaS group like REvil consists of an amorphous and ever-changing web of associates, making individual arrests is a constant game of catch up, and will be unlikely to bring down the group as a whole.

The same battle is being played out on the scale of individual attack campaigns. Security tools focused on the hallmarks of previously encountered threats are also in a continuous state of catch up: by the time a single attack is detected, fingerprinted, and stored for next time, attackers and their techniques have moved on.

But there is another option available to defenders, who are increasingly turning to Self-Learning AI to stay one step ahead of attackers. By learning its digital surroundings and identifying subtle deviations indicative of an attack, this technology can detect and respond to novel attacks on the first encounter. Below is an example of how Self-Learning AI detected an attack launched by REvil without the use of rules or signatures.

REvil threat find

In the summer of 2021, a REvil affiliate launched an attack against a health and social care organization – a sector that has seen a big increase in cyber-attacks since the start of the global pandemic. While the attack was detected by Darktrace’s AI without using rules or signatures, the security team was not monitoring Darktrace at the time. In the absence of Autonomous Response – which would have taken targeted action to contain the threat – the attack was allowed to progress.

After gaining access to the network via the laptop of a remote worker, the attacker was able to abuse a legitimate remote desktop (RDP) connection to a corporate jump server to bruteforce additional credentials.

Once equipped with more credentials, the attacker connected to multiple internal devices via RDP, including a second jump server. Data exfiltration began from the initially compromised server over RDP port 3389.

Two weeks later, the attacker identified the organization’s crown jewels, stored on a third server, and attempted to initiate command and control (C2) communications. The server made a number of unusual external connections, including attempts to connect to a rare domain that resembled the pattern of activity associated with REvil’s earlier Kaseya ransomware campaign.

Darktrace for Endpoint, which was running on remote user devices, provided additional visibility, enabling the security team to determine the initially compromised user device. Had Antigena been active on the endpoint, it would have intervened to stop this unusual activity by blocking the specific unusual connections – containing the attack without impacting normal business operations.

Connecting the dots of a low-and-slow attack

The total dwell time of the attacker was 22 days. They were patient, and undertook actions in bursts of activity often with days in between. This pattern of behavior is not uncommon for ransomware attacks, particularly those using the RaaS model in which each step may be performed by different gang members or affiliates.

Darktrace’s Cyber AI Analyst was able to track in real time the complete attack lifecycle over several weeks, stitching together the separate phases of the attack into a coherent security incident.

Figure 1: Cyber AI Analyst reveals the complete attack kill chain

New name, same game

This attack is another case of threat actors living off the land: using legitimate programs and processes that were already in use in the environment to perform malicious activity. This can be very difficult to detect with traditional tools that are based on static use cases and cannot differentiate a legitimate RDP session from a malicious one.

As cyber-criminal groups like REvil continue to defy law enforcement efforts, defenders need to stay ahead with AI technology that learns its environment, adapts as it changes and grows, and responds to threats based on subtle deviations that indicate an emerging attack. Autonomous Response has been adopted by over thousands of organizations across all areas of the digital estate – from email and cloud services to endpoint devices, stopping ransomware attacks early, before encryption is achieved.

Thanks to Darktrace analyst Petal Beharry for her insights on the above threat find.

Technical details

Darktrace model detections:

  • Device / RDP Scan
  • Device / Bruteforce Activity
  • Compliance / Outbound Remote Desktop
  • Anomalous Connection / Upload via Remote Desktop
  • Anomalous Connection / Download and Upload
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Anomalous Connection / Active Remote Desktop Tunnel
  • Device / New or Uncommon SMB Named Pipe
  • Device / Large Number of Connections to New Endpoints

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Oakley Cox
Director of Product

Oakley is a Product Manager within the Darktrace R&D team. He collaborates with global customers, including all critical infrastructure sectors and Government agencies, to ensure Darktrace/OT remains the first in class solution for OT Cyber Security. He draws on 7 years’ experience as a Cyber Security Consultant to organizations across EMEA, APAC and ANZ. His research into cyber-physical security has been published by Cyber Security journals and by CISA. Oakley has a Doctorate (PhD) from the University of Oxford.

Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

November 28, 2024

/

Cloud

Cloud security: addressing common CISO challenges with advanced solutions

Default blog imageDefault blog image

Cloud adoption is a cornerstone of modern business with its unmatched potential for scalability, cost efficiency, flexibility, and net-zero targets around sustainability. However, as organizations migrate more workloads, applications, and sensitive data to the cloud it introduces more complex challenges for CISO’s. Let’s dive into the most pressing issues keeping them up at night—and how Darktrace / CLOUD provides a solution for each.

1. Misconfigurations: The Silent Saboteur

Misconfigurations remain the leading cause of cloud-based data breaches. In 2023 alone over 80%  of data breaches involved data stored in the cloud.1  Think open storage buckets or overly permissive permissions; seemingly minor errors that are easily missed and can snowball into major disasters. The fallout of breaches can be costly—both financially and reputationally.

How Darktrace / CLOUD Helps:

Darktrace / CLOUD continuously monitors your cloud asset configurations, learning your environment and using these insights to flag potential misconfigurations. New scans are triggered when changes take place, then grouped and prioritised intelligently, giving you an evolving and prioritised view of vulnerabilities, best practice and mitigation strategies.

2. Hybrid Environments: The Migration Maze

Many organizations are migrating to the cloud, but hybrid setups (where workloads span both on-premises and cloud environments) create unique challenges and visibility gaps which significantly increase complexity. More traditional and most cloud native security tooling struggles to provide adequate monitoring for these setups.

How Darktrace / CLOUD Helps:

Provides the ability to monitor runtime activity for both on-premises and cloud workloads within the same user interface. By leveraging the right AI solution across this diverse data set, we understand the behaviour of your on-premises workloads and how they interact with cloud systems, spotting unusual connectivity or data flow activity during and after the migration process.

This unified visibility enables proactive detection of anomalies, ensures seamless monitoring across hybrid environments, and provides actionable insights to mitigate risks during and after the migration process.

3. Securing Productivity Suites: The Last Mile

Cloud productivity suites like Microsoft 365 (M365) are essential for modern businesses and are often the first step for an organization on a journey to Infrastructure as a Service (IaaS) or Platform as a Service (PaaS) use cases. They also represent a prime target for attackers. Consider a scenario where an attacker gains access to an M365 account, and proceeds to; access sensitive emails, downloading files from SharePoint, and impersonating the user to send phishing emails to internal employees and external partners. Without a system to detect these behaviours, the attack may go unnoticed until significant damage is done.

How Darktrace helps:

Darktrace’s Active AI platform integrates with M365 and establishes an understanding of normal business activity, enabling the detection of abnormalities across its suite including Email, SharePoint and Teams. By identifying subtle deviations in behaviour, such as:

   •    Unusual file accesses

   •    Anomalous login attempts from unexpected locations or devices.

   •    Suspicious email forwarding rules created by compromised accounts.

Darktrace’s Autonomous Response can act precisely to block malicious actions, by disabling compromised accounts and containing threats before they escalate. Precise actions also ensure that critical business operations are maintained even when a response is triggered.  

4. Agent Fatigue: The Visibility Struggle

To secure cloud environments, visibility is critical. If you don’t know what’s there, how can you secure it? Many solutions require agents to be deployed on every server, workload, and endpoint. But managing and deploying agents across sprawling hybrid environments can be both complex and time-consuming when following change controls, and especially as cloud resources scale dynamically.

How Darktrace / CLOUD Helps:

Darktrace reduces or eliminates the need for widespread agent deployment. Its agentless by default, integrating directly with cloud environments and providing instant visibility without the operational headache. Darktrace ensures coverage with minimal friction. By intelligently graphing the relationships between assets and logically grouping your deployed Cloud resources, you are equipped with real-time visibility to quickly understand and protect your environment.

So why Darktrace / CLOUD?

Darktrace’s Self-Learning AI redefines cloud security by adapting to your unique environment, detecting threats as they emerge, and responding in real-time. From spotting misconfigurations to protecting productivity suites and securing hybrid environments. Darktrace / CLOUD simplifies cloud security challenges without adding operational burdens.

From Chaos to Clarity

Cloud security doesn’t have to be a game of endless whack-a-mole. With Darktrace / CLOUD, CISOs can achieve the visibility, control, and proactive protection they need to navigate today’s complex cloud ecosystems confidently.

[1] https://hbr.org/2024/02/why-data-breaches-spiked-in-2023

Continue reading
About the author
Adam Stevens
Director of Product, Cloud Security

Blog

/

November 27, 2024

/

Inside the SOC

Behind the veil: Darktrace's detection of VPN exploitation in SaaS environments

Default blog imageDefault blog image

Introduction

In today’s digital landscape, Software-as-a-Service (SaaS) platforms have become indispensable for businesses, offering unparalleled flexibly, scalability, and accessibly across locations. However, this convenience comes with a significant caveat - an expanded attack surface that cyber criminals are increasingly exploiting. In 2023, 96.7% of organizations reported security incidents involving at least one SaaS application [1].

Virtual private networks (VPNs) play a crucial role in SaaS security, acting as gateways for secure remote access and safeguarding sensitive data and systems when properly configured. However, vulnerabilities in VPNs can create openings for attacks to exploit, allowing them to infiltrate SaaS environments, compromise data, and disrupt business operations. Notably, in early 2024, the Darktrace Threat Research team investigated the exploitation of zero-day vulnerabilities in Ivanti Connect Secure VPNs, which would allow threat actors to gain access to sensitive systems and execute remote code.

More recently, in August, Darktrace identified a SaaS compromise where a threat actor logged into a customer’s VPN from an unusual IP address, following an initial email compromise. The attacker then used a separate VPN to create a new email rule designed to obfuscate the phishing campaign they would later launch.

Attack Overview

The initial attack vector in this case appeared to be through the customer’s email environment. A trusted external contact received a malicious email from another mutual contact who had been compromised and forwarded it to several of the organization’s employees, believing it to be legitimate. Attackers often send malicious emails from compromised accounts to their past contacts, leveraging the trust associated with familiar email addresses. In this case, that trust caused an external victim to unknowingly propagate the attack further. Unfortunately, an internal user then interacted with a malicious payload included in the reply section of the forwarded email.

Later the same day, Darktrace / IDENTITY detected unusual login attempts from the IP 5.62.57[.]7, which had never been accessed by other SaaS users before. There were two failed attempts prior to the successful logins, with the error messages “Authentication failed due to flow token expired” and “This occurred due to 'Keep me signed in' interrupt when the user was signing in.” These failed attempts indicate that the threat actor may have been attempting to gain unauthorized access using stolen credentials or exploiting session management vulnerabilities. Furthermore, there was no attempt to use multi-factor authentication (MFA) during the successful login, suggesting that the threat actor had compromised the account’s credentials.

Following this, Darktrace detected the now compromised account creating a new email rule named “.” – a telltale sign of a malicious actor attempting to hide behind an ambiguous or generic rule name.

The email rule itself was designed to archive incoming emails and mark them as read, effectively hiding them from the user’s immediate view. By moving emails to the “Archive” folder, which is not frequently checked by end users, the attacker can conceal malicious communications and avoid detection. The settings also prevent any automatic deletion of the rules or forced overrides, indicating a cautious approach to maintaining control over the mailbox without raising suspicion. This technique allows the attacker to manipulate email visibility while maintaining a façade of normality in the compromised account.

Email Rule:

  • AlwaysDeleteOutlookRulesBlob: False
  • Force: False
  • MoveToFolder: Archive
  • Name: .
  • MarkAsRead: True
  • StopProcessingRules: True

Darktrace further identified that this email rule had been created from another IP address, 95.142.124[.]42, this time located in Canada. Open-source intelligence (OSINT) sources indicated this endpoint may have been malicious [2].

Given that this new email rule was created just three minutes after the initial login from a different IP in a different country, Darktrace recognized a geographic inconsistency. By analyzing the timing and rarity of the involved IP addresses, Darktrace identified the likelihood of malicious activity rather than legitimate user behavior, prompting further investigation.

Figure 1: The compromised SaaS account making anomalous login attempts from an unusual IP address in the US, followed by the creation of a new email rule from another VPN IP in Canada.

Just one minute later, Darktrace observed the attacker sending a large number of phishing emails to both internal and external recipients.

Figure 2: The compromised SaaS user account sending a high volume of outbound emails to new recipients or containing suspicious content.

Darktrace / EMAIL detected a significant spike in inbound emails for the compromised account, likely indicating replies to phishing emails.

Figure 3: The figure demonstrates the spike in inbound emails detected for the compromised account, including phishing-related replies.

Furthermore, Darktrace identified that these phishing emails contained a malicious DocSend link. While docsend[.]com is generally recognized as a legitimate file-sharing service belonging to Dropbox, it can be vulnerable to exploitation for hosting malicious content. In this instance, the DocSend domain in question, ‘hxxps://docsend[.]com/view/h9t85su8njxtugmq’, was flagged as malicious by various OSINT vendors [3][4].

Figure 4: Phishing emails detected containing a malicious DocSend link.

In this case, Darktrace Autonomous Response was not in active mode in the customer’s environment, which allowed the compromise to escalate until their security team intervened based on Darktrace’s alerts. Had Autonomous Response been enabled during the incident, it could have quickly mitigated the threat by disabling users and inbox rules, as suggested by Darktrace as actions that could be manually applied, exhibiting unusual behavior within the customer’s SaaS environment.

Figure 5: Suggested Autonomous Response actions for this incident that required human confirmation.

Despite this, Darktrace’s Managed Threat Detection service promptly alerted the Security Operations Center (SOC) team about the compromise, allowing them to conduct a thorough investigation and inform the customer before any further damage could take place.

Conclusion

This incident highlights the role of Darktrace in enhancing cyber security through its advanced AI capabilities. By detecting the initial phishing email and tracking the threat actor's actions across the SaaS environment, Darktrace effectively identified the threat and brought it to the attention of the customer’s security team.

Darktrace’s proactive monitoring was crucial in recognizing the unusual behavior of the compromised account. Darktrace / IDENTITY detected unauthorized access attempts from rare IP addresses, revealing the attacker’s use of a VPN to hide their location.

Correlating these anomalies allowed Darktrace to prompt immediate investigation, showcasing its ability to identify malicious activities that traditional security tools might miss. By leveraging AI-driven insights, organizations can strengthen their defense posture and prevent further exploitation of compromised accounts.

Credit to Priya Thapa (Cyber Analyst), Ben Atkins (Senior Model Developer) and Ryan Traill (Analyst Content Lead)

Appendices

Real-time Detection Models

  • SaaS / Compromise / Unusual Login and New Email Rule
  • SaaS / Compromise / High Priority New Email Rule
  • SaaS / Compromise / New Email Rule and Unusual Email Activity
  • SaaS / Compromise / Unusual Login and Outbound Email Spam
  • SaaS / Compliance / Anomalous New Email Rule
  • SaaS / Compromise / Suspicious Login and Suspicious Outbound Email(s)
  • SaaS / Email Nexus / Possible Outbound Email Spam

Autonomous Response Models

  • Antigena / SaaS / Antigena Email Rule Block
  • Antigena / SaaS / Antigena Enhanced Monitoring from SaaS User Block
  • Antigena / SaaS / Antigena Suspicious SaaS Activity Block

MITRE ATT&CK Mapping

Technique Name Tactic ID Sub-Technique of

  • Cloud Accounts. DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS T1078.004 T1078
  • Compromise Accounts RESOURCE DEVELOPMENT T1586
  • Email Accounts RESOURCE DEVELOPMENT T1586.002 T1586
  • Internal Spearphishing LATERAL MOVEMENT T1534 -
  • Outlook Rules PERSISTENCE T1137.005 T1137
  • Phishing INITIAL ACCESS T1566 -

Indicators of Compromise (IoCs)

IoC – Type – Description

5.62.57[.]7 – Unusual Login Source

95.142.124[.]42– IP – Unusual Source for Email Rule

hxxps://docsend[.]com/view/h9t85su8njxtugmq - Domain - Phishing Link

References

[1] https://wing.security/wp-content/uploads/2024/02/2024-State-of-SaaS-Report-Wing-Security.pdf

[2] https://www.virustotal.com/gui/ip-address/95.142.124.42

[3] https://urlscan.io/result/0caf3eee-9275-4cda-a28f-6d3c6c3c1039/

[4] https://www.virustotal.com/gui/url/8631f8004ee000b3f74461e5060e6972759c8d38ea8c359d85da9014101daddb

Continue reading
About the author
Priya Thapa
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI