Blog
/
Email
/
October 9, 2024

How Darktrace won an email security trial by learning the business, not the breach

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Oct 2024
Discover how Darktrace identified a sophisticated business email compromise (BEC) attack to successfully acquire a prospective customer in a trial alongside two other email security vendors. This case demonstrates the clear differentiator of true unsupervised machine learning applied to the right use cases, compared to miscellaneous vendor hype around AI.

Recently, Darktrace ran a customer trial of our email security product for a leading European infrastructure operator looking to upgrade its email protection.

During this prospective customer trial, Darktrace encountered several security incidents that penetrated existing security layers. Two of these incidents were Business Email Compromise (BEC) attacks, which we’re going to take a closer look at here.  

Darktrace was deployed for a trial at the same time as two other email security vendors, who were also being evaluated by the prospective customer. Darktrace’s superior detection of threats in this trial laid the groundwork for the respective company to choose our product.

Let’s dig into some of the elements of this Darktrace tech win and how they came to light during this trial.

Why truly intelligent AI starts learning from scratch

Darktrace’s detection capabilities are powered by true unsupervised machine learning, which detects anomalous activity from its ever-evolving understanding of normal for every unique environment. Consequently, it learns every business from the beginning, training on an organization’s data to understand normal for its users, devices, assets and the millions of connections between them.  

This learning period takes around a week, during which the AI hones its understanding of the business to a precise degree. At this stage, the system may produce some noise or lack precision, but this is a testament to our unsupervised machine learning. Unlike solutions that promise faster results by relying on preset assumptions, our AI takes the necessary time to learn from scratch, ensuring a deeper understanding and increasingly accurate detection over time.

Real threats detected by Darktrace

Attack 1: Supply chain attack

BEC and supply chain attacks are notoriously difficult to detect, as they take advantage of established, trusted senders.  

This attack came from a legitimate server via a known supplier with which the prospective customer had active and ongoing communication. Using the compromised account, the attacker didn’t just send out randomized spam, they crafted four sophisticated social engineering emails with the aim of soliciting users to click on a link – directly tapping into existing conversations. Darktrace / EMAIL was configured in passive mode during this trial; it would otherwise have held the emails before they arrived in the inbox. Luckily in this instance, one user reported the email to the CISO before any other users clicked the link. Upon investigation, the link contained timed ransomware detonation.  

Darktrace was the only vendor that caught any of these four emails. Our unique behavioral AI approach enables Darktrace / EMAIL to protect customers from even the most sophisticated attacks that abuse prior trust and relationships.

How did Darktrace catch this attack that other vendors missed?

With traditional email security, security teams have been obliged to allow entire organizations to eliminate false positives – on the premise that it’s easier to make a broad decision based on an entire known domain and assume that potential risk of a supply chain attack.

By contrast, Darktrace adopts a zero trust mentality, analyzing every email to understand whether communication that has previously been safe remains safe. That’s why Darktrace is uniquely positioned to detect BEC, based on its deep learning of internal and external users. Because it creates individual profiles for every account, group and business composed of multiple signals, it can detect deviations in their communication patterns based on the context and content of each message. We think of this as the ‘self-learning’ vs ‘learning the breach’ differentiator.

Fig 1: Darktrace analysis of one of four malicious emails sent by the trusted supplier. It gives it an anomaly score of 100, despite it being from a known correspondent with a known domain relationship and moderate mailing history.

If set in autonomous mode where it can apply actions, Darktrace / EMAIL would have quarantined all four emails. Using machine learning indicators such as ‘Inducement Shift’ and ‘General Behavioral Anomaly’, it deemed the four emails ‘Out of Character’. It also identified the link as highly likely to be phishing, based purely on its context. These indicators are critical because the link itself belonged to a widely used legitimate domain, leveraging their established internet reputation to appear safe.  

Around an hour later the supplier regained control of the account and sent a legitimate email alerting a wide distribution list to the phishing emails sent. Darktrace was able to discern the previously sent malicious emails from the current legitimate emails and allowed these emails through. Compared to other vendors that have a static understanding of malicious which needs to be updated (in cases like this, once a supplier is de-compromised), Darktrace’s deep understanding of external entities enables further nuance and precision in determining good from bad.

Fig 2: Darktrace let through four emails (subject line: Virus E-Mail) from the supplier once they had regained control of the compromised account, with a limited anomaly score despite having held the previous malicious emails. If any actions had been taken a red icon would show on the right-hand side – in this instance Darktrace did not take action and let the emails through.

Attack 2: Microsoft 365 account takeover

As part of building behavioral profiles of every email user, Darktrace analyzes their wider account activity. Account activity, such as unusual login patterns and administrative activity, is a key variable to detect account compromise before malicious activity occurs, but it also feeds into Darktrace’s understanding of which emails should belong in every user’s inbox.  

When the customer experienced an account compromise on day two of the trial, Darktrace began an investigation and was able to provide the full breakdown and scope of the incident.

The account was compromised via an email, which Darktrace would have blocked if it had been deployed autonomously at the time. Once the account had been compromised, detection details included:

  • Unusual Login and Account Update
  • Multiple Unusual External Sources for SaaS Credential
  • Unusual Activity Block
  • Login From Rare Endpoint While User is Active
Fig 3: Darktrace flagged the following indicators of compromise that deviated from normal behavior for the user in question, signaling an account takeover

With Darktrace / EMAIL, every user is analyzed for behavioral signals including authentication and configuration activity. Here the unusual login, credential input and rare endpoint were all clear signals a compromised account, contextualized against what is normal for that employee. Because Darktrace isn’t looking at email security merely from the perspective of the inbox. It constantly reevaluates the identity of each individual, group and organization (as defined by their behavioral signals), to determine precisely what belongs in the inbox and what doesn’t.  

In this instance, Darktrace / EMAIL would have blocked the incident were it not deployed in passive mode. In the initial intrusion it would have blocked the compromising email. And once the account was compromised, it would have taken direct blocking actions on the account based on the anomalous activity it detected, providing an extra layer of defense beyond the inbox.  

Account takeover protection is always part of Darktrace / EMAIL, which can be extended to fully cover Microsoft 365 SaaS with Darktrace / IDENTITY. By bringing SaaS activity into scope, security teams also benefit from an extended set of use cases including compliance and resource management.

Why this customer committed to Darktrace / EMAIL

“Darktrace was the only AI vendor that showed learning,” – CISO, Trial Customer

Throughout this trial, Darktrace evolved its understanding of the trial customer’s business and its email users. It identified attacks that other vendors did not, while allowing safe emails through. Furthermore, the CISO explicitly cited Darktrace as the only technology that demonstrated autonomous learning. As well as catching threats that other vendors did not, the CISO saw maturity areas such as how Darktrace dealt with non-productive mail and business-as-usual emails, without any user input.  Because of the nature of unsupervised ML, Darktrace’s learning of right and wrong will never be static or complete – it will continue to revise its understanding and adapt to the changing business and communications landscape.

This case study highlights a key tenet of Darktrace’s philosophy – that a rules and tuning-based approach will always be one step behind. Delivering benign emails while holding back malicious emails from the same domain demonstrates that safety is not defined in a straight line, or by historical precedent. Only by analyzing every email in-depth for its content and context can you guarantee that it belongs.  

While other solutions are making efforts to improve a static approach with AI, Darktrace’s AI remains truly unsupervised so it is dynamic enough to catch the most agile and evolving threats. This is what allows us to protect our customers by plugging a vital gap in their security stack that ensures they can meet the challenges of tomorrow's email attacks.

Interested in learning more about Darktrace / EMAIL? Check out our product hub.

Download: Darktrace / EMAIL Solution Brief

Discover the most advanced cloud-native AI email security solution to protect your domain and brand while preventing phishing, novel social engineering, business email compromise, account takeover, and data loss.

  • Gain up to 13 days of earlier threat detection and maximize ROI on your current email security
  • Experience 20-25% more threat blocking power with Darktrace / EMAIL
  • Stop the 58% of threats bypassing traditional email security

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Carlos Gray
Product Manager

Carlos Gonzalez Gray is a Product Marketing Manager at Darktrace, based in the Madrid Office. As an email security Subject Matter Expert he collaborates with the global product team to align each product with the company’s ethos and ensures Darktrace are continuously pushing the boundaries of innovation. His prior role at Darktrace was in Sales Engineering, leading the Iberian team and specializing in both the email and OT sectors. Additionally, his prior experience as a consultant to IBEX 35 companies in Spain has made him well-versed in compliance, auditing, and data privacy. Carlos holds an Honors BA in Political Science and a Masters in Cybersecurity from IE University.

Django Beek
Solutions Engineer
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

AI

/

March 11, 2025

Survey findings: AI Cyber Threats are a Reality, the People are Acting Now

Default blog imageDefault blog image

Artificial intelligence is changing the cybersecurity field as fast as any other, both on the offensive and defensive side. We surveyed over 1,500 cybersecurity professionals from around the world to uncover their attitudes, understanding, and priorities when it comes to AI cybersecurity in 2025. Our full report, unearthing some telling trends, is out now.

Download the full report to explore these findings in depth

How is AI impacting the threat landscape?

state of ai in cybersecurity report graphic showing ai powered cyber threats having an impact on organizations

Nearly 74% of participants say AI-powered threats are a major challenge for their organization and 90% expect these threats to have a significant impact over the next one to two years, a slight increase from last year. These statistics highlight that AI is not just an emerging risk but a present and evolving one.

As attackers harness AI to automate and scale their operations, security teams must adapt just as quickly. Organizations that fail to prioritize AI-specific security measures risk falling behind, making proactive defense strategies more critical than ever.

Some of the most pressing AI-driven cyber threats include:

  • AI-powered social engineering: Attackers are leveraging AI to craft highly personalized and convincing phishing emails, making them harder to detect and more likely to bypass traditional defenses.
  • More advanced attacks at speed and scale: AI lowers the barrier for less skilled threat actors, allowing them to launch sophisticated attacks with minimal effort.
  • Attacks targeting AI systems: Cybercriminals are increasingly going after AI itself, compromising machine learning models, tampering with training data, and exploiting vulnerabilities in AI-driven applications and APIs.

Safe and secure use of AI

AI is having an effect on the cyber-threat landscape, but it also is starting to impact every aspect of a business – from marketing to HR to operations. The accessibility of AI tools for employees improves workflows, but also poses risks like data privacy violations, shadow AI, and violation of industry regulations.

How are security practitioners accommodating for this uptick in AI use across business?

Among survey participants 45% of security practitioners say they had already established a policy on the safe and secure use of AI and around 50% are in discussions to do so.

While almost all participants acknowledge that this is a topic that needs to be addressed, the gap between discussion and execution could underscore a need for greater insight, stronger leadership commitment, and adaptable security frameworks to keep pace with AI advancements in the workplace. The most popular actions taken are:

  1. Implemented security controls to prevent unwanted exposure of corporate data when using AI technology (67%)
  2. Implemented security controls to protect against other threats/risks associated with using AI technology (62%)

This year specifically, we see further action being taken with the implementation of security controls, training, and oversight.

For a more detailed breakdown that includes results based on industry and organizational size, download the full report here.

AI threats are rising, but security teams still face major challenges

78% of CISOs say AI-powered cyber-threats are already having a significant impact on their organization, a 5% increase from last year.

While cyber professionals feel more prepared for AI powered threats than they did 12 months ago, 45% still say their organization is not adequately prepared—down from 60% last year.

Despite this optimism, key challenges remain, including:

  • A shortage of personnel to manage tools and alerts
  • Gaps in knowledge and skills related to AI-driven countermeasures

Confidence in traditional security tools vs. new AI based tools

This year, 73% of survey participants expressed confidence in their security team’s proficiency in using AI within their tool stack, marking an increase from the previous year.

However, only 50% of participants have confidence in traditional cybersecurity tools to detect and block AI-powered threats. In contrast, 75% of participants are confident in AI-powered security solutions for detecting and blocking such threats and attacks.

As leading organizations continue to implement and optimize their use of AI, they are incorporating it into an increasing number of workflows. This growing familiarity with AI is likely to boost the confidence levels of practitioners even further.

The data indicates a clear trend towards greater reliance on AI-powered security solutions over traditional tools. As organizations become more adept at integrating AI into their operations, their confidence in these advanced technologies grows.

This shift underscores the importance of staying current with AI advancements and ensuring that security teams are well-trained in utilizing these tools effectively. The increasing confidence in AI-driven solutions reflects their potential to enhance cybersecurity measures and better protect against sophisticated threats.

State of AI report

Download the full report to explore these findings in depth

The full report for Darktrace’s State of AI Cybersecurity is out now. Download the paper to dig deeper into these trends, and see how results differ by industry, region, organization size, and job title.  

Continue reading
About the author
The Darktrace Community

Blog

/

Network

/

March 11, 2025

Darktrace's Early Detection of the Latest Ivanti Exploits

Default blog imageDefault blog image

As reported in Darktrace’s 2024 Annual Threat Report, the exploitation of Common Vulnerabilities and Exposures (CVEs) in edge infrastructure has consistently been a significant concern across the threat landscape, with internet-facing assets remaining highly attractive to various threat actors.

Back in January 2024, the Darktrace Threat Research team investigated a surge of malicious activity from zero-day vulnerabilities such as those at the time on Ivanti Connect Secure (CS) and Ivanti Policy Secure (PS) appliances. These vulnerabilities were disclosed by Ivanti in January 2024 as CVE-2023-46805 (Authentication bypass vulnerability) and CVE-2024-21887 (Command injection vulnerability), where these two together allowed for unauthenticated, remote code execution (RCE) on vulnerable Ivanti systems.

What are the latest vulnerabilities in Ivanti products?

In early January 2025, two new vulnerabilities were disclosed in Ivanti CS and PS, as well as their Zero Trust Access (ZTA) gateway products.

  • CVE-2025-0282: A stack-based buffer overflow vulnerability. Successful exploitation could lead to unauthenticated remote code execution, allowing attackers to execute arbitrary code on the affected system [1]
  • CVE-2025-0283: When combined with CVE-2025-0282, this vulnerability could allow a local authenticated attacker to escalate privileges, gaining higher-level access on the affected system [1]

Ivanti also released a statement noting they are currently not aware of any exploitation of CVE-2025-0283 at the time of disclosure [1].

Darktrace coverage of Ivanti

The Darktrace Threat Research team investigated the new Ivanti vulnerabilities across their customer base and discovered suspicious activity on two customer networks. Indicators of Compromise (IoCs) potentially indicative of successful exploitation of CVE-2025-0282 were identified as early as December 2024, 11 days before they had been publicly disclosed by Ivanti.

Case 1: December 2024

Authentication with a Privileged Credential

Darktrace initially detected suspicious activity connected with the exploitation of CVE-2025-0282 on December 29, 2024, when a customer device was observed logging into the network via SMB using the credential “svc_negbackups”, before authenticating with the credential “svc_negba” via RDP.

This likely represented a threat actor attempting to identify vulnerabilities within the system or application and escalate their privileges from a basic user account to a more privileged one. Darktrace / NETWORK recognized that the credential “svc_negbackups” was new for this device and therefore deemed it suspicious.

Darktrace / NETWORK’s detection of the unusual use of a new credential.
Figure 1: Darktrace / NETWORK’s detection of the unusual use of a new credential.

Likely Malicious File Download

Shortly after authentication with the privileged credential, Darktrace observed the device performing an SMB write to the C$ share, where a likely malicious executable file, ‘DeElevate64.exe’ was detected. While this is a legitimate Windows file, it can be abused by malicious actors for Dynamic-Link Library (DLL) sideloading, where malicious files are transferred onto other devices before executing malware. There have been external reports indicating that threat actors have utilized this technique when exploiting the Ivanti vulnerabilities [2].

Darktrace’s detection the SMB write of the likely malicious file ‘DeElevate64.exe’ on December 29, 2024.
Figure 2: Darktrace’s detection the SMB write of the likely malicious file ‘DeElevate64.exe’ on December 29, 2024.

Shortly after, a high volume of SMB login failures using the credential “svc_counteract-ext” was observed, suggesting potential brute forcing activity. The suspicious nature of this activity triggered an Enhanced Monitoring model alert that was escalated to Darktrace’s Security Operations Center (SOC) for further investigation and prompt notification, as the customer was subscribed to the Security Operations Support service.  Enhanced Monitoring are high-fidelity models detect activities that are more likely to be indicative of compromise

Suspicious Scanning and Internal Reconnaissance

Darktrace then went on to observe the device carrying out network scanning activity as well as anomalous ITaskScheduler activity. Threat actors can exploit the task scheduler to facilitate the initial or recurring execution of malicious code by a trusted system process, often with elevated permissions. The same device was also seen carrying out uncommon WMI activity.

Darktrace’s detection of a suspicious network scan from the compromised device.
Figure 3: Darktrace’s detection of a suspicious network scan from the compromised device.

Further information on the suspicious scanning activity retrieved by Cyber AI Analyst, including total number of connections and ports scanned.
Figure 4: Further information on the suspicious scanning activity retrieved by Cyber AI Analyst, including total number of connections and ports scanned.
Darktrace’s detection of a significant spike in WMI activity represented by DCE_RPC protocol request increases at the time, with little to no activity observed one week either side.
Figure 5: Darktrace’s detection of a significant spike in WMI activity represented by DCE_RPC protocol request increases at the time, with little to no activity observed one week either side.

Case 2: January 2025

Suspicious File Downloads

On January 13, 2025, Darktrace began to observe activity related to the exploitation of CVE-2025-0282  on the network of another customer, with one in particular device attempting to download likely malicious files.

Firstly, Darktrace observed the device making a GET request for the file “DeElevator64.dll” hosted on the IP 104.238.130[.]185. The device proceeded to download another file, this time “‘DeElevate64.exe”. from the same IP. This was followed by the download of “DeElevator64.dll”, similar to the case observed in December 2024. External reporting indicates that this DLL has been used by actors exploiting CVE-2025-0282 to sideload backdoor into infected systems [2]

Darktrace’s detection of the download of the suspicious file “DeElevator64.dll” on January 13, 2025.
Figure 6: Darktrace’s detection of the download of the suspicious file “DeElevator64.dll” on January 13, 2025.

Suspicious Internal Activity

Just like the previous case, on January 15, the same device was observed making numerous internal connections consistent with network scanning activity, as well as DCE-RPC requests.

Just a few minutes later, Darktrace again detected the use of a new administrative credential, observing the following details:

  • domain=REDACTED hostname=DESKTOP-1JIMIV3 auth_successful=T result=success ntlm_version=2 .

The hostname observed by Darktrace, “DESKTOP-1JIMIV3,” has also been identified by other external vendors and was associated with a remote computer name seen accessing compromised accounts [2].

Darktrace also observed the device performing an SMB write of an additional file, “to.bat,” which may have represented another malicious file loaded from the DLL files that the device had downloaded earlier. It is possible this represented the threat actor attempting to deploy a remote scheduled task.

Darktrace’s detection of SMB Write of the suspicious file “to.bat”.
Figure 7: Darktrace’s detection of SMB Write of the suspicious file “to.bat”.

Further investigation revealed that the device was likely a Veeam server, with its MAC address indicating it was a VMware device. It also appeared that the Veeam server was capturing activities referenced from the hostname DESKTOP-1JIMIV3. This may be analogous to the remote computer name reported by external researchers as accessing accounts [2]. However, this activity might also suggest that while the same threat actor and tools could be involved, they may be targeting a different vulnerability in this instance.

Autonomous Response

In this case, the customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device. This action allows a device to make its usual connections while blocking any that deviate from expected behavior. These mitigative actions by Darktrace ensured that the compromise was promptly halted, preventing any further damage to the customer’s environment.

Darktrace's Autonomous Response capability actively mitigating the suspicious internal connectivity.
Figure 8: Darktrace's Autonomous Response capability actively mitigating the suspicious internal connectivity.

Conclusion

If the previous blog in January 2024 was a stark reminder of the threat posed by malicious actors exploiting Internet-facing assets, the recent activities surrounding CVE-2025-0282 and CVE-2025-0283 emphasize this even further.

Based on the telemetry available to Darktrace, a wide range of malicious activities were identified, including the malicious use of administrative credentials, the download of suspicious files, and network scanning in the cases investigated .

These activities included the download of suspicious files such as “DeElevate64.exe” and “DeElevator64.dll” potentially used by attackers to sideload backdoors into infected systems. The suspicious hostname DESKTOP-1JIMIV3 was also observed and appears to be associated with a remote computer name seen accessing compromised accounts. These activities are far from exhaustive, and many more will undoubtedly be uncovered as threat actors evolve.

Fortunately, Darktrace was able to swiftly detect and respond to suspicious network activity linked to the latest Ivanti vulnerabilities, sometimes even before these vulnerabilities were publicly disclosed.

Credit to: Nahisha Nobregas, Senior Cyber Analyst, Emma Foulger, Principle Cyber Analyst, Ryan Trail, Analyst Content Lead and the Darktrace Threat Research Team

Appendices

Darktrace Model Detections

Case 1

·      Anomalous Connection / Unusual Admin SMB Session

·      Anomalous File / EXE from Rare External Location

·      Anomalous File / Internal / Unusual SMB Script Write

·      Anomalous File / Multiple EXE from Rare External Locations

·      Anomalous File / Script from Rare External Location

·      Compliance / SMB Drive Write

·      Device / Multiple Lateral Movement Model Alerts

·      Device / Network Range Scan

·      Device / Network Scan

·      Device / New or Uncommon WMI Activity

·      Device / RDP Scan

·      Device / Suspicious Network Scan Activity

·      Device / Suspicious SMB Scanning Activity

·      User / New Admin Credentials on Client

·      User / New Admin Credentials on Server 

Case 2

·      Anomalous Connection / Unusual Admin SMB Session

·      Anomalous Connection / Unusual Admin RDP Session

·      Compliance / SMB Drive Write

·      Device / Multiple Lateral Movement Model Alerts

·      Device / SMB Lateral Movement

·      Device / Possible SMB/NTLM Brute Force

·      Device / Suspicious SMB Scanning Activity

·      Device / Network Scan

·      Device / RDP Scan

·      Device / Large Number of Model Alerts

·      Device / Anomalous ITaskScheduler Activity

·      Device / Suspicious Network Scan Activity

·      Device / New or Uncommon WMI Activity

List of IoCs Possible IoCs:

·      DeElevator64.dll

·      deelevator64.dll

·      DeElevate64.exe

·      deelevator64.dll

·      deelevate64.exe

·      to.bat

Mid-high confidence IoCs:

-       104.238.130[.]185

-       http://104.238.130[.]185/DeElevate64.exe

-       http://104.238.130[.]185/DeElevator64.dll

-       DESKTOP-1JIMIV3

References:

1.     https://www.ivanti.com/blog/security-update-ivanti-connect-secure-policy-secure-and-neurons-for-zta-gateways

2.     https://unit42.paloaltonetworks.com/threat-brief-ivanti-cve-2025-0282-cve-2025-0283/

3.     https://www.proofpoint.com/uk/blog/identity-threat-defense/privilege-escalation-attack#:~:text=In%20this%20approach%2C%20attackers%20exploit,handing%20over%20their%20login%20credentials

Continue reading
About the author
Hugh Turnbull
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI