Blog
/

Inside the SOC

/
April 5, 2023

Understanding Qakbot Infections and Attack Paths

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
05
Apr 2023
Explore the network-based analysis of Qakbot infections with Darktrace. Learn about the various attack paths used by cybercriminals and Darktrace's response.

In an ever-changing threat landscape, security vendors around the world are forced to quickly adapt, react, and respond to known attack vectors and threats. In the face of this, malicious actors are constantly looking for novel ways to gain access to networks. Whether that’s through new exploitations of network vulnerabilities or new delivery methods, attackers and their methods are continually evolving. Although it is valuable for organizations to leverage threat intelligence to keep abreast of known threats to their networks, intelligence alone is not enough to defend against increasingly versatile attackers. Having an autonomous decision maker able to detect and respond to emerging threats, even those employing novel or unknown techniques, is paramount to defend against network compromise.

At the end of January 2023, threat actors began to abuse OneNote attachments to deliver the malware strain, Qakbot, onto users' devices. Widespread adoption of this novel delivery method resulted in a surge in Qakbot infections across Darktrace's customer base between the end of January 2023 and the end of February 2023. Using its Self-Learning AI, Darktrace was able to uncover and respond to these so-called ‘QakNote’ infections as the new trend emerged. Darktrace detected and responded to the threat at multiple stages of the kill chain, preventing damaging and widespread compromise to customer networks.

Qakbot and The Recent Weaponization of OneNote

Qakbot first appeared in 2007 as a banking trojan designed to steal sensitive data such as banking credentials. Since then, Qakbot has evolved into a highly modular, multi-purpose tool, with backdoor, payload delivery, reconnaissance, lateral movement, and data exfiltration capabilities. Although Qakbot's primary delivery method has always been email-based, threat actors have been known to modify their email-based delivery methods of Qakbot in the face of changing circumstances. In the first half of 2022, Microsoft started rolling out versions of Office which block XL4 and VBA macros by default [1]/[2]/[3]. Prior to this change, Qakbot email campaigns typically consisted in the spreading of deceitful emails with Office attachments containing malicious macros. In the face of Microsoft's default blocking of macros, threat actors appeared to cease delivering Qakbot via Office attachments, and shifted to primarily using HTML attachments, through a method known as 'HTML smuggling' [4]/[5]. After the public disclosure [6] of the Follina vulnerability (CVE-2022-30190) in Microsoft Support Diagnostic Tool (MSDT) in May 2022, Qakbot actors were seen capitalizing on the vulnerability to facilitate their email-based delivery of Qakbot payloads [7]/[8]/[9]. 

Given the inclination of Qakbot actors to adapt their email-based delivery methods, it is no surprise that they were quick to capitalize on the novel OneNote-based delivery method which emerged in December 2022. Since December 2022, threat actors have been seen using OneNote attachments to deliver a variety of malware strains, ranging from Formbook [10] to AsynRAT [11] to Emotet [12]. The abuse of OneNote documents to deliver malware is made possible by the fact that OneNote allows for the embedding of executable file types such as HTA files, CMD files, and BAT files. At the end of January 2023, actors started to leverage OneNote attachments to deliver Qakbot [13]/[14]. The adoption of this novel delivery method by Qakbot actors resulted in a surge in Qakbot infections in the wider threat landscape and across the Darktrace customer base.

Observed Activity Chains

Between January 31 and February 24, 2023, Darktrace observed variations of the following pattern of activity across its customer base:

1. User's device contacts OneNote-related endpoint 

2. User's device makes an external GET request with an empty Host header, a target URI whose final segment consists in 5 or 6 digits followed by '.dat', and a User-Agent header referencing either cURL or PowerShell. The GET request is responded to with a DLL file

3. User's device makes SSL connections over ports 443 and 2222 to unusual external endpoints, and makes TCP connections over port 65400 to 23.111.114[.]52

4. User's device makes SSL connections over port 443 to an external host named 'bonsars[.]com' (IP: 194.165.16[.]56) and TCP connections over port 443 to 78.31.67[.]7

5. User’s device makes call to Endpoint Mapper service on internal systems and then connects to the Service Control Manager (SCM) 

6. User's device uploads files with algorithmically generated names and ‘.dll’ or ‘.dll.cfg’ file extensions to SMB shares on internal systems

7. User's device makes Service Control requests to the systems to which it uploaded ‘.dll’ and ‘.dll.cfg’ files 

Further investigation of these chains of activity revealed that they were parts of Qakbot infections initiated via interactions with malicious OneNote attachments. 

Figure 1: Steps of observed QakNote infections.

Delivery Phase

Users' interactions with malicious OneNote attachments, which were evidenced by devices' HTTPS connections to OneNote-related endpoints, such as 'www.onenote[.]com', 'contentsync.onenote[.]com', and 'learningtools.onenote[.]com', resulted in the retrieval of Qakbot DLLs from unusual, external endpoints. In some cases, the user's interaction with the malicious OneNote attachment caused their device to fetch a Qakbot DLL using cURL, whereas, in other cases, it caused their device to download a Qakbot DLL using PowerShell. These different outcomes reflected variations in the contents of the executable files embedded within the weaponized OneNote attachments. In addition to having cURL and PowerShell User-Agent headers, the HTTP requests triggered by interaction with these OneNote attachments had other distinctive features, such as empty host headers and target URIs whose last segment consists in 5 or 6 digits followed by '.dat'. 

Figure 2: Model breach highlighting a user’s device making a HTTP GET request to 198.44.140[.]78 with a PowerShell User-Agent header and the target URI ‘/210/184/187737.dat’.
Figure 3: Model breach highlighting a user’s device making a HTTP GET request to 103.214.71[.]45 with a cURL User-Agent header and the target URI ‘/70802.dat’.
Figure 4: Event Log showing a user’s device making a GET request with a cURL User-Agent header to 185.231.205[.]246 after making an SSL connection to contentsync.onenote[.]com.
Figure 5: Event Log showing a user’s device making a GET request with a cURL User-Agent header to 185.231.205[.]246 after making an SSL connection to www.onenote[.]com.

Command and Control Phase

After fetching Qakbot DLLs, users’ devices were observed making numerous SSL connections over ports 443 and 2222 to highly unusual, external endpoints, as well as large volumes of TCP connections over port 65400 to 23.111.114[.]52. These connections represented Qakbot-infected devices communicating with command and control (C2) infrastructure. Qakbot-infected devices were also seen making intermittent connections to legitimate endpoints, such as 'xfinity[.]com', 'yahoo[.]com', 'verisign[.]com', 'oracle[.]com', and 'broadcom[.]com', likely due to Qakbot making connectivity checks. 

Figure 6: Event Log showing a user’s device contacting Qakbot C2 infrastructure and making connectivity checks to legitimate domains.
Figure 7: Event Log showing a user’s device contacting Qakbot C2 infrastructure and making connectivity checks to legitimate domains.

Cobalt Strike and VNC Phase

After Qakbot-infected devices established communication with C2 servers, they were observed making SSL connections to the external endpoint, bonsars[.]com, and TCP connections to the external endpoint, 78.31.67[.]7. The SSL connections to bonsars[.]com were C2 connections from Cobalt Strike Beacon, and the TCP connections to 78.31.67[.]7 were C2 connections from Qakbot’s Virtual Network Computing (VNC) module [15]/[16]. The occurrence of these connections indicate that actors leveraged Qakbot infections to drop Cobalt Strike Beacon along with a VNC payload onto infected systems. The deployment of Cobalt Strike and VNC likely provided actors with ‘hands-on-keyboard’ access to the Qakbot-infected systems. 

Figure 8: Advanced Search logs showing a user’s device contacting OneNote endpoints, fetching a Qakbot DLL over HTTP, making SSL connections to Qakbot infrastructure and connectivity checks to legitimate domains, and then making SSL connections to the Cobalt Strike endpoint, bonsars[.]com.
Figure 9: Event Log showing a user’s device contacting the Cobalt Strike C2 endpoint, bonsars[.]com, and the VNC C2 endpoint, 78.31.67[.]7, whilst simultaneously contacting the Qakbot C2 endpoint, 47.32.78[.]150.

Lateral Movement Phase

After dropping Cobalt Strike Beacon and a VNC module onto Qakbot-infected systems, actors leveraged their strengthened foothold to connect to the Service Control Manager (SCM) on internal systems in preparation for lateral movement. Before connecting to the SCM, infected systems were seen making calls to the Endpoint Mapper service, likely to identify exposed Microsoft Remote Procedure Call (MSRPC) services on internal systems. The MSRPC service, Service Control Manager (SCM), is known to be abused by Cobalt Strike to create and start services on remote systems. Connections to this service were evidenced by OpenSCManager2  (Opnum: 0x40) and OpenSCManagerW (Opnum: 0xf) calls to the svcctl RPC interface. 

Figure 10: Advanced Search logs showing a user’s device contacting the Endpoint Mapper and Service Control Manager (SCM) services on internal systems. 

After connecting to the SCM on internal systems, infected devices were seen using SMB to distribute files with ‘.dll’ and ‘.dll.cfg’ extensions to SMB shares. These uploads were followed by CreateWowService (Opnum: 0x3c) calls to the svcctl interface, likely intended to execute the uploaded payloads. The naming conventions of the uploaded files indicate that they were Qakbot payloads. 

Figure 11: Advanced Search logs showing a user’s device making Service Control DCE-RPC requests to internal systems after uploading ‘.dll’ and ‘.dll.cfg’ files to them over SMB.

Fortunately, none of the observed QakNote infections escalated further than this. If these infections had escalated, it is likely that they would have resulted in the widespread detonation of additional malicious payloads, such as ransomware.  

Darktrace Coverage of QakNote Activity

Figure 1 shows the steps involved in the QakNote infections observed across Darktrace’s customer base. How far attackers got along this chain was in part determined by the following three factors:

The presence of Darktrace/Email typically stopped QakNote infections from moving past the initial infection stage. The presence of RESPOND/Network significantly slowed down observed activity chains, however, infections left unattended and not mitigated by the security teams were able to progress further along the attack chain. 

Darktrace observed varying properties in the QakNote emails detected across the customer base. OneNote attachments were typically detected as either ‘application/octet-stream’ files or as ‘application/x-tar’ files. In some cases, the weaponized OneNote attachment embedded a malicious file, whereas in other cases, the OneNote file embedded a malicious link (typically a ‘.png’ or ‘.gif’ link) instead. In all cases Darktrace observed, QakNote emails used subject lines starting with ‘RE’ or ‘FW’ to manipulating their recipients into thinking that such emails were part of an existing email chain/thread. In some cases, emails impersonated users known to their recipients by including the names of such users in their header-from personal names. In many cases, QakNote emails appear to have originated from likely hijacked email accounts. These are highly successful methods of social engineering often employed by threat actors to exploit a user’s trust in known contacts or services, convincing them to open malicious emails and making it harder for security tools to detect.

The fact that observed QakNote emails used the fake-reply method, were sent from unknown email accounts, and contained attachments with unusual MIME types, caused such emails to breach the following Darktrace/Email models:

  • Association / Unknown Sender
  • Attachment / Unknown File
  • Attachment / Unsolicited Attachment
  • Attachment / Highly Unusual Mime
  • Attachment / Unsolicited Anomalous Mime
  • Attachment / Unusual Mime for Organisation
  • Unusual / Fake Reply
  • Unusual / Unusual Header TLD
  • Unusual / Fake Reply + Unknown Sender
  • Unusual / Unusual Connection from Unknown
  • Unusual / Off Topic

QakNote emails impersonating known users also breached the following DETECT & RESPOND/Email models:

  • Unusual / Unrelated Personal Name Address
  • Spoof / Basic Known Entity Similarities
  • Spoof / Internal User Similarities
  • Spoof / External User Similarities
  • Spoof / Internal User Similarities + Unrelated Personal Name Address
  • Spoof / External User Similarities + Unrelated Personal Name Address
  • Spoof / Internal User Similarities + Unknown File
  • Spoof / External User Similarities + Fake Reply
  • Spoof / Possible User Spoof from New Address - Enhanced Internal Similarities
  • Spoof / Whale

The actions taken by Darktrace on the observed emails is ultimately determined by Darktrace/Email models are breached. Those emails which did not breach Spoofing models (due to lack of impersonation indicators) received the ‘Convert Attachment’ action. This action converts suspicious attachments into neutralized PDFs, in this case successfully unweaponizing the malicious OneNote attachments. QakNote emails which did breach Spoofing models (due to the presence of impersonation indicators) received the strongest possible action, ‘Hold Message’. This action prevents suspicious emails from reaching the recipients’ mailbox. 

Figure 12: Email log showing a malicious OneNote email (without impersonation indicators) which received a 87% anomaly score, a ‘Move to junk’ action, and a ‘Convert attachment’ actions from Darktrace/Email.
Figure 13: Email log showing a malicious OneNote email (with impersonation indicators) which received an anomaly score of 100% and a ‘Hold message’ action from Darktrace/Email.
Figure 14: Email log showing a malicious OneNote email (with impersonation indicators) which received an anomaly score of 100% and a ‘Hold message’ action from Darktrace/Email.

If threat actors managed to get past the first stage of the QakNote kill chain, likely due to the absence of appropriate email security tools, the execution of the subsequent steps resulted in strong intervention from Darktrace/Network. 

Interactions with malicious OneNote attachments caused their devices to fetch a Qakbot DLL from a remote server via HTTP GET requests with an empty Host header and either a cURL or PowerShell User-Agent header. These unusual HTTP behaviors caused the following Darktrace/Network models to breach:

  • Device / New User Agent
  • Device / New PowerShell User Agent
  • Device / New User Agent and New IP
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous Connection / Powershell to Rare External
  • Anomalous File / Numeric File Download
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / New User Agent Followed By Numeric File Download

For customers with RESPOND/Network active, these breaches resulted in the following autonomous actions:

  • Enforce group pattern of life for 30 minutes
  • Enforce group pattern of life for 2 hours
  • Block connections to relevant external endpoints over relevant ports for 2 hours   
  • Block all outgoing traffic for 10 minutes
Figure 15: Event Log showing a user’s device receiving Darktrace RESPOND/Network actions after downloading a Qakbot DLL. 
Figure 16: Event Log showing a user’s device receiving Darktrace RESPOND/Network actions after downloading a Qakbot DLL.

Successful, uninterrupted downloads of Qakbot DLLs resulted in connections to Qakbot C2 servers, and subsequently to Cobalt Strike and VNC C2 connections. These C2 activities resulted in breaches of the following DETECT/Network models:

  • Compromise / Suspicious TLS Beaconing To Rare External
  • Compromise / Large Number of Suspicious Successful Connections
  • Compromise / Large Number of Suspicious Failed Connections
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Compromise / Beaconing Activity To External Rare
  • Compromise / Slow Beaconing Activity To External Rare
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Device / Initial Breach Chain Compromise

For customers with RESPOND/Network active, these breaches caused RESPOND to autonomously perform the following actions:

  • Block connections to relevant external endpoints over relevant ports for 1 hour
Figure 17: Event Log showing a user’s device receiving RESPOND/Network actions after contacting the Qakbot C2 endpoint,  Cobalt Strike C2 endpoint, bonsars[.]com.

In cases where C2 connections were allowed to continue, actors attempted to move laterally through usage of SMB and Service Control Manager. This lateral movement activity caused the following DETECT/Network models to breach:

  • Device / Possible SMB/NTLM Reconnaissance
  • Anomalous Connection / New or Uncommon Service Control 

For customers with RESPOND/Network enabled, these breaches caused RESPOND to autonomously perform the following actions:

  • Block connections to relevant internal endpoints over port 445 for 1 hour
Figure 18: Event Log shows a user’s device receiving RESPOND/Network actions after contacting the Qakbot C2 endpoint, 5.75.205[.]43, and distributing ‘.dll’ and ‘.dll.cfg’ files internally.

The QakNote infections observed across Darktrace’s customer base involved several steps, each of which elicited alerts and autonomous preventative actions from Darktrace. By autonomously investigating the alerts from DETECT, Darktrace’s Cyber AI Analyst was able to connect the distinct steps of observed QakNote infections into single incidents. It then produced incident logs to present in-depth details of the activity it uncovered, provide full visibility for customer security teams.

Figure 19: AI Analyst incident entry showing the steps of a QakNote infection which AI Analyst connected following its autonomous investigations.

Conclusion

Faced with the emerging threat of QakNote infections, Darktrace demonstrated its ability to autonomously detect and respond to arising threats in a constantly evolving threat landscape. The attack chains which Darktrace observed across its customer base involved the delivery of Qakbot via malicious OneNote attachments, the usage of ports 65400 and 2222 for Qakbot C2 communication, the usage of Cobalt Strike Beacon and VNC for ‘hands-on-keyboard’ activity, and the usage of SMB and Service Control Manager for lateral movement. 

Despite the novelty of the OneNote-based delivery method, Darktrace was able to identify QakNote infections across its customer base at various stages of the kill chain, using its autonomous anomaly-based detection to identify unusual activity or deviations from expected behavior. When active, Darktrace/Email neutralized malicious QakNote attachments sent to employees. In cases where Darktrace/Email was not active, Darktrace/Network detected and slowed down the unusual network activities which inevitably ensued from Qakbot infections. Ultimately, this intervention from Darktrace’s products prevented infections from leading to further harmful activity, such as data exfiltration and the detonation of ransomware.

Darktrace is able to offer customers an unparalleled level of network security by combining both Darktrace/Network and Darktrace/Email, safeguarding both their email and network environments. With its suite of products, including DETECT and RESPOND, Darktrace can autonomously uncover threats to customer networks and instantaneously intervene to prevent suspicious activity leading to damaging compromises. 

Appendices

MITRE ATT&CK Mapping 

Initial Access:

T1566.001 – Phishing: Spearphishing Attachment

Execution:

T1204.001 – User Execution: Malicious Link

T1204.002 – User Execution: Malicious File

T1569.002 – System Services: Service Execution

Lateral Movement:

T1021.002 – Remote Services: SMB/Windows Admin Shares

Command and Control:

T1573.002 – Encrypted Channel : Asymmetric Cryptography

T1571 – Non-Standard Port 

T1105 – Ingress Tool Transfer

T1095 –  Non-Application Layer Protocol

T1219 – Remote Access Software

List of IOCs

IP Addresses and/or Domain Names:

- 103.214.71[.]45 - Qakbot download infrastructure 

- 141.164.35[.]94 - Qakbot download infrastructure 

- 95.179.215[.]225 - Qakbot download infrastructure 

- 128.254.207[.]55 - Qakbot download infrastructure

- 141.164.35[.]94 - Qakbot download infrastructure

- 172.96.137[.]149 - Qakbot download infrastructure

- 185.231.205[.]246 - Qakbot download infrastructure

- 216.128.146[.]67 - Qakbot download infrastructure 

- 45.155.37[.]170 - Qakbot download infrastructure

- 85.239.41[.]55 - Qakbot download infrastructure

- 45.67.35[.]108 - Qakbot download infrastructure

- 77.83.199[.]12 - Qakbot download infrastructure 

- 45.77.63[.]210 - Qakbot download infrastructure 

- 198.44.140[.]78 - Qakbot download infrastructure

- 47.32.78[.]150 - Qakbot C2 infrastructure

- 197.204.13[.]52 - Qakbot C2 infrastructure

- 68.108.122[.]180 - Qakbot C2 infrastructure

- 2.50.48[.]213 - Qakbot C2 infrastructure

- 66.180.227[.]60 - Qakbot C2 infrastructure

- 190.206.75[.]58 - Qakbot C2 infrastructure

- 109.150.179[.]236 - Qakbot C2 infrastructure

- 86.202.48[.]142 - Qakbot C2 infrastructure

- 143.159.167[.]159 - Qakbot C2 infrastructure

- 5.75.205[.]43 - Qakbot C2 infrastructure

- 184.176.35[.]223 - Qakbot C2 infrastructure 

- 208.187.122[.]74 - Qakbot C2 infrastructure

- 23.111.114[.]52 - Qakbot C2 infrastructure 

- 74.12.134[.]53 – Qakbot C2 infrastructure

- bonsars[.]com • 194.165.16[.]56 - Cobalt Strike C2 infrastructure 

- 78.31.67[.]7 - VNC C2 infrastructure

Target URIs of GET Requests for Qakbot DLLs:

- /70802.dat 

- /51881.dat

- /12427.dat

- /70136.dat

- /35768.dat

- /41981.dat

- /30622.dat

- /72286.dat

- /46557.dat

- /33006.dat

- /300332.dat

- /703558.dat

- /760433.dat

- /210/184/187737.dat

- /469/387/553748.dat

- /282/535806.dat

User-Agent Headers of GET Requests for Qakbot DLLs:

- curl/7.83.1

- curl/7.55.1

- Mozilla/5.0 (Windows NT; Windows NT 10.0; en-US) WindowsPowerShell/5.1.19041.2364

- Mozilla/5.0 (Windows NT; Windows NT 10.0; en-US) WindowsPowerShell/5.1.17763.3770

- Mozilla/5.0 (Windows NT; Windows NT 10.0; en-GB) WindowsPowerShell/5.1.19041.2364

SHA256 Hashes of Downloaded Qakbot DLLs:  

- 83e9bdce1276d2701ff23b1b3ac7d61afc97937d6392ed6b648b4929dd4b1452

- ca95a5dcd0194e9189b1451fa444f106cbabef3558424d9935262368dba5f2c6 

- fa067ff1116b4c8611eae9ed4d59a19d904a8d3c530b866c680a7efeca83eb3d

- e6853589e42e1ab74548b5445b90a5a21ff0d7f8f4a23730cffe285e2d074d9e

- d864d93b8fd4c5e7fb136224460c7b98f99369fc9418bae57de466d419abeaf6

- c103c24ccb1ff18cd5763a3bb757ea2779a175a045e96acbb8d4c19cc7d84bea

Names of Internally Distributed Qakbot DLLs: 

- rpwpmgycyzghm.dll

- rpwpmgycyzghm.dll.cfg

- guapnluunsub.dll

- guapnluunsub.dll.cfg

- rskgvwfaqxzz.dll

- rskgvwfaqxzz.dll.cfg

- hkfjhcwukhsy.dll

- hkfjhcwukhsy.dll.cfg

- uqailliqbplm.dll

- uqailliqbplm.dll.cfg

- ghmaorgvuzfos.dll

- ghmaorgvuzfos.dll.cfg

Links Found Within Neutralized QakNote Email Attachments:

- hxxps://khatriassociates[.]com/MBt/3.gif

- hxxps://spincotech[.]com/8CoBExd/3.gif

- hxxps://minaato[.]com/tWZVw/3.gif

- hxxps://famille2point0[.]com/oghHO/01.png

- hxxps://sahifatinews[.]com/jZbaw/01.png

- hxxp://87.236.146[.]112/62778.dat

- hxxp://87.236.146[.]112/59076.dat

- hxxp://185.231.205[.]246/73342.dat

References

[1] https://techcommunity.microsoft.com/t5/excel-blog/excel-4-0-xlm-macros-now-restricted-by-default-for-customer/ba-p/3057905

[2] https://techcommunity.microsoft.com/t5/microsoft-365-blog/helping-users-stay-safe-blocking-internet-macros-by-default-in/ba-p/3071805

[3] https://learn.microsoft.com/en-us/deployoffice/security/internet-macros-blocked

[4] https://www.cyfirma.com/outofband/html-smuggling-a-stealthier-approach-to-deliver-malware/

[5] https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/html-smuggling-the-hidden-threat-in-your-inbox/

[6] https://twitter.com/nao_sec/status/1530196847679401984

[7] https://www.fortiguard.com/threat-signal-report/4616/qakbot-delivered-through-cve-2022-30190-follina

[8] https://isc.sans.edu/diary/rss/28728

[9] https://darktrace.com/blog/qakbot-resurgence-evolving-along-with-the-emerging-threat-landscape

[10] https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/trojanized-onenote-document-leads-to-formbook-malware/

[11] https://www.proofpoint.com/uk/blog/threat-insight/onenote-documents-increasingly-used-to-deliver-malware

[12] https://www.malwarebytes.com/blog/threat-intelligence/2023/03/emotet-onenote

[13] https://blog.cyble.com/2023/02/01/qakbots-evolution-continues-with-new-strategies/

[14] https://news.sophos.com/en-us/2023/02/06/qakbot-onenote-attacks/

[15] https://isc.sans.edu/diary/rss/29210

[16] https://unit42.paloaltonetworks.com/feb-wireshark-quiz-answers/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Sam Lister
SOC Analyst
Connor Mooney
SOC Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

November 19, 2024

/
No items found.

Darktrace Leading the Future of Network Detection and Response with Recognition from KuppingerCole

Default blog imageDefault blog image

KuppingerCole has recognized Darktrace as an overall Leader, Product Leader, Market Leader and Innovation Leader in the KuppingerCole Leadership Compass: Network Detection and Response (2024).

With the perimeter all but dissolved, Network Detection and Response (NDR) tools are quickly becoming a critical component of the security stack, as the main tool to span the modern network. NDRs connect on-premises infrastructure to cloud, remote workers, identities, SaaS applications, and IoT/OT – something not available to EDR that requires agents and isolates visibility to individual devices.

KuppingerCole Analysts AG designated Darktrace an ‘Overall Leader’ position because of our continual innovation around user-led security. Self-Learning AI together with automated triage through Cyber AI Analyst and real-time autonomous response actions have been instrumental to security teams in stopping potential threats before they become a breach. With this time saved, Darktrace is leading beyond reactive security to truly harden a network, allowing the team to spend more time in preventive security measures.

Network Detection and Response protects where others fail to reach

NDR solutions operate at the network level, deploying inside or parallel to your network to ingest raw traffic via virtual or physical sensors. This gives them unprecedented potential to identify anomalies and possible breaches in any network - far beyond simple on-prem, into dynamic virtual environments, cloud or hybrid networks, cloud applications, and even remote devices accessing the corporate network via ZTNA or VPN.

Rather than looking at processes level data, NDR can detect the lateral movement of an adversary across multiple assets by analyzing network traffic patterns which endpoint solutions may not be able to identify [1]. In the face of a growing, complex environment, organizations large and small, will benefit from using NDRs either in conjunction, or as the foundation for, their Extended Detection and Response (XDR) for a unified view that improves their overall threat detection, ease of investigation and faster response times.

Today's NDR solutions are expected to include advanced ML and artificial intelligence (AI) algorithms [1]

Traditional IDS & IPS systems are labor intensive, requiring continuous rule creation, outdated signature maintenance, and manual monitoring for false positives or incorrect actions. This is no longer viable against a higher volume and changing landscape, making NDR the natural network tool to level against these evolutions. The role of AI in NDRs is designed to meet this challenge, “to reduce both the labor need for analysis and false positives, as well as add value by improving anomaly detection and overall security posture” .

Celebrating success in leadership and innovation

Darktrace is proud to have been recognized as an NDR “Overall Leader” in KuppingerCole Analyst AG’s Leadership Compass. The report gave further recognition to Darktrace as a ‘Product Leader”, “Innovation Leader” and “Market Leader”.

Maximum scores were received for core product categories, in addition to market presence and financial strength. Particular attention was directed to our innovation. This year has seen several NDR updates via Darktrace’s ActiveAI Security Platform version 6.2 which has enhanced investigation workflows and provided new AI transparency within the toolset.

Positive scores were also received for Darktrace’s deployment ecosystem and surrounding support, minimizing the need for extraneous integrations through a unique platform architecture that connects with over 90 other vendors.

High Scores received in Darktrace’s KuppingerCole Spider Chart across Core NDR capability areas
Figure 1: High Scores received in Darktrace’s KuppingerCole Spider Chart across Core NDR capability areas

Darktrace’s pioneering AI approach sets it apart

Darktrace / NETWORK’s approach is fundamentally different to other NDRs. Continual anomaly-based detection (our Self-Learning AI), understands what is normal across each of your network entities, and then examines deviations from these behaviors rather than needing to apply static rules or ML to adversary techniques. As a result, Darktrace / NETWORK can focus on surfacing the novel threats that cannot be anticipated, whilst our proactive solutions expose gaps that can be exploited and reduce the risk of known threats.    

Across the millions of possible network events that may occur, Darktrace’s Cyber AI Analyst reduces that manual workload for SOC teams by presenting only what is most important in complete collated incidents. This accelerates SOC Level 2 analyses of incidents by 10x2, giving time back, first for any necessary response and then for preventive workflows.

Finally, when incidents begin to escalate, Darktrace can natively (or via third-party) autonomously respond and take precise actions based on a contextual understanding of both the affected assets and incident in question so that threats can be disarmed without impacting wider operations.

Within the KuppingerCole report, several standout strengths were listed:

  • Cyber AI Analyst was celebrated as a core differentiator, enhancing both visibility and investigation into critical network issues and allowing a faster response.
  • Darktrace / NETWORK was singled for its user benefits. Both a clear interface for analysts with advanced filtering and analytical tools, and efficient role-based access control (RBAC) and configuration options for administrators.
  • At the product level, Darktrace was recognized for complete network traffic analysis (NTA) capabilities allowing extensive analysis into components like application use/type, fingerprinting, source/destination communication, in addition to comprehensive protocol support across a range of network device types from IT, OT, IoT and mobiles and detailed MITRE ATT&CK mapping.
  • Finally, at the heart of it, Darktrace’s innovation was highlighted in relation to its intrinsic Self Learning AI, utilizing multiple layers of deep learning, neural networks, LLMs, NLP, Generative AI and more to understand network activity and filter it for what’s critical on an individual customer level.

Going beyond reactive security

Darktrace’s visibility and AI-enabled detection, investigation and response enable security teams to focus on hardening gaps in their network through contextual relevance & priority. Darktrace / NETWORK explicitly gives time back to security teams allowing them to focus on the bigger strategic and governance workflows that sometimes get overlooked. This is enabled through proactive solutions intrinsically connected to our NDR:

  • Darktrace / Proactive Exposure Management, which looks beyond just CVE risks to instead discover, prioritize and validate risks by business impact and how to mobilize against them early, to reduce the number of real threats security teams face.
  • Darktrace / Incident Readiness & Recovery, a solution rather than service-based approach to incident response (IR) that lets teams respond in the best way to each incident and proactively test their familiarity and effectiveness of IR workflows with sophisticated incident simulations involving their own analysts and assets.

Together, these solutions allow Darktrace / NETWORK to go beyond the traditional NDR and shift teams to a more hardened and proactive state.

Putting customers first

Customers continue to sit at the forefront of Darktrace R&D, with their emerging needs and pain points being the direct inspiration for our continued innovation.

This year Darktrace / NETWORK has protected thousands of customers against the latest attacks, from data exfil and destruction, to unapproved privilege escalation and ransomware including strains like Medusa, Qilin and AlphV BlackCat.

In each instance, Darktrace / NETWORK was able to provide a holistic lens of the anomalies present in their traffic, collated those that were important, and either responded or gave teams the ability to take targeted actions against their threats – even when adversaries pivoted. In one example of a Gootloader compromise, Darktrace ensured a SOC went from detection to recovery within 5 days, 92.8% faster than the average containment time of 69 days.

Results like these, focused on user-led security, have secured Darktrace’s position within the latest NDR Leadership Compass.

To find out more about what makes Darktrace / NETWORK special, read the full KuppingerCole report.

References

[1] Osman Celik, KuppingerCole Leadership Compass:Network Detection and Response (2024)

[2] Darktrace's AI Analyst customer fleet data

[3] https://www.ibm.com/reports/data-breach

Continue reading
About the author
Gabriel Few-Wiegratz
Product Marketing Manager

Blog

/

November 18, 2024

/

Inside the SOC

From Royal to BlackSuit: Understanding the Tactics and Impact of a Sophisticated Ransomware Strain

Default blog imageDefault blog image

What is BlackSuit Ransomware?

Since late 2023, Darktrace has detected BlackSuit ransomware infiltrating multiple customer networks in the US. This ransomware has targeted a wide range of industries, including arts, entertainment, real estate, public administration, defense, and social security.

Emerging in May 2023, BlackSuit is believed to be a spinoff of Royal ransomware due to similarities in code and Conti, and most likely consists of Russian and Eastern European hackers [1]. Recorded Future reported that the ransomware had affected 95 organizations worldwide, though the actual number is likely much higher [2]. While BlackSuit does not appear to focus on any particular sector, it has targeted multiple organizations in the healthcare, education, IT, government, retail and manufacturing industries [3]. Employing double extortion tactics, BlackSuit not only encrypts files but also steals sensitive data to leverage ransom payments.

BlackSuit has demanded over USD 500 million in ransoms, with the highest individual demand reaching USD 60 million [4]. Notable targets include CDK Global, Japanese media conglomerate Kadokawa, multiple educational institutions, Octapharma Plasma, and the government of Brazil [5][6][7][8].

Darktrace’s Coverage of BlackSuit Ransomware Attack

Case 1, November 2023

The earliest attack on a Darktrace customer by BlackSuit was detected at the start of November 2023. The unusual network activity began on a weekend—a time commonly chosen by ransomware groups to increase their chances of success, as many security teams operate with reduced staff. Darktrace identified indicators of the attackers’ presence on the network for almost two weeks, during which a total of 15 devices exhibited suspicious behavior.

The attack commenced with unusual internal SMB (Server Message Block) connections using a compromised service account. An internal device uploaded an executable (zzza.exe) to a domain controller (DC) and shortly after, wrote a script (socks5.ps1) to another device. According to a Cybersecurity Advisory from the CISA (Cybersecurity and Infrastructure Security Agency, US), the script file was a PowerShell reverse proxy [9].

Approximately an hour and a half later, the device to which the script was written exhibited uncommon WMI (Windows Management Instrumentation) activity. Two hours after receiving the executable file, the DC was observed making an outgoing NTLM request, using PowerShell to remotely execute commands, distributing differently named executable files (<PART OF THE CUSTOMER’S NAME>.exe), and controlling services on other devices.

Eighteen hours after the start of the unusual activity, Darktrace detected another device making repeated connections to “mystuff.bublup[.]com”, which the aforementioned CISA Advisory identifies as a domain used by BlackSuit for data exfiltration [9].

About ten minutes after the suspicious executables were distributed across the network, and less than 24 hours after the start of the unusual activity, file encryption began. A total of ten devices were seen appending the “.blacksuit” extension to files saved on other devices using SMB, as well as writing ransom notes (readme.blacksuit.txt). The file encryption lasted less than 20 minutes.

 An example of the contents of a BlackSuit ransom note being written over SMB.
Figure 1: An example of the contents of a BlackSuit ransom note being written over SMB.

During this compromise, external connections to endpoints related to ConnectWise’s ScreenConnect remote management tool were also seen from multiple servers, suggesting that the tool was likely being abused for command-and-control (C2) activity. Darktrace identified anomalous connectivity associated with ScreenConnect was seen up to 11 days after the start of the attack.

10 days after the start of the compromise, an account belonging to a manager was detected adding “.blacksuit” extensions to the customer’s Software-a-Service (SaaS) resources while connecting from 173.251.109[.]106. Six minutes after file encryption began, Darktrace flagged the unusual activity and recommended a block. However, since Autonomous Response mode was not enabled, the customer’s security team needed to manually confirm the action. Consequently, suspicious activity continued for about a week after the initial encryption. This included disabling authentication on the account and an unusual Teams session initiated from the suspicious external endpoint 216.151.180[.]147.

Case 2, February 2024

Another BlackSuit compromise occurred at the start of February 2024, when Darktrace identified approximately 50 devices exhibiting ransomware-related activity in another US customer’s environment. Further investigation revealed that a significant number of additional devices had also been compromised. These devices were outside Darktrace’s purview to the customer’s specific deployment configuration. The threat actors managed to exfiltrate around 4 TB of data.

Initial access to the network was gained via a virtual private network (VPN) compromise in January 2024, when suspicious connections from a Romanian IP address were detected. According to CISA, the BlackSuit group often utilizes the services of initial access brokers (IAB)—actors who specialize in infiltrating networks, such as through VPNs, and then selling that unauthorized access to other threat actors [9]. Other initial access vectors include phishing emails, RDP (Remote Desktop Protocol) compromise, and exploitation of vulnerable public-facing applications.

Similar to the first case, the file encryption began at the end of the working week. During this phase of the attack, affected devices were observed encrypting files on other internal devices using two compromised administrator accounts. The encryption activity lasted for approximately six and a half hours. Multiple alerts were sent to the customer from Darktrace’s Security Operations Centre (SOC) team, who began reviewing the activity within four minutes of the start of the file encryption.

Darktrace’s Cyber AI Analyst clustering together multiple events related to unusual activity on the network, including file encryption over SMB by BlackSuit.
Figure 2: Darktrace’s Cyber AI Analyst clustering together multiple events related to unusual activity on the network, including file encryption over SMB by BlackSuit.
Figure 3: A spike in model alerts on the day when file encryption by BlackSuit was observed in the network.

In this case, the threat actor utilized SystemBC proxy malware for command and control (C2). A domain controller (DC) was seen connecting to 137.220.61[.]94 on the same day the file encryption took place. The DC was also observed connecting to a ProxyScrape domain around the same time, which is related to the SOCKS5 protocol used by SystemBC. During this compromise, RDP, SSH, and SMB were used for lateral movement within the network.

Figure 4: A Cyber AI Analyst investigation alerting to a device on the VPN subnet making suspicious internal SSH connections due to malicious actors moving laterally within the network.

Signs of threat actors potentially being on the network were observed as early as two days prior to the file encryption. This included unusual internal network scanning via multiple protocols (ICMP, SMB, RDP, etc.), credential brute-forcing, SMB access failures, and anonymous SMBv1 sessions. These activities were traced to IP addresses belonging to two desktop devices in the VPN subnet associated with two regular employee user accounts. Threat actors were seemingly able to exploit at least one of these accounts due to LDAP legacy policies being in place on the customer’s environment.

A Cyber AI Analyst incident summary alerting to a device on the VPN subnet conducting internal reconnaissance.
Figure 5: A Cyber AI Analyst incident summary alerting to a device on the VPN subnet conducting internal reconnaissance.
Examples of the proposed Darktrace Autonomous Response actions on the day BlackSuit initiated file encryption.
Figure 6: Examples of the proposed Darktrace Autonomous Response actions on the day BlackSuit initiated file encryption.

Case 3, August 2024

The most recently observed BlackSuit compromise occurred in August 2024, when a device was observed attempting to brute-force the credentials of an IT administrator. This activity continued for 11 days.

Once the admin’s account was successfully compromised, network scanning, unusual WMI, and SAMR (Security Account Manager Remote protocol) activity followed. A spike in the use of this account was detected on a Sunday—once again, the attackers seemingly targeting the weekend—when the account was used by nearly 50 different devices.

The compromised admin’s account was exploited for data gathering via SMB, resulting in the movement of 200 GB of data between internal devices in preparation for exfiltration. The files were then archived using the naming convention “*.part<number>.rar”.

Around the same time, Darktrace observed data transfers from 19 internal devices to “bublup-media-production.s3.amazonaws[.]com,” totaling just over 200 GB—the same volume of data gathered internally. Connections to other Bublup domains were also detected. The internal data download and external data transfer activity took approximately 8-9 hours.

Unfortunately, Darktrace was not configured in Autonomous Response mode at the time of the attack, meaning any mitigative actions to stop the data gathering or exfiltration required human confirmation.  

One of the compromised devices was seen sending 80 GB of data to bublup-media-production.s3.amazonaws[.]com within a span of 4 hours.
Figure 7: One of the compromised devices was seen sending 80 GB of data to bublup-media-production.s3.amazonaws[.]com within a span of 4 hours.

Once the information was stolen, the threat actor moved on to the final stage of the attack—file encryption. Five internal devices, using either the compromised admin account or connecting via anonymous SMBv1 sessions, were seen encrypting files and writing ransom notes to five other devices on the network. The attempts at file encryption continued for around two hours, but Darktrace’s Autonomous Response capability was able to block the activity and prevent the attack from escalating.

Conclusion

The persistent and evolving threat posed by ransomware like BlackSuit underscores the critical importance of robust cybersecurity measures across all sectors. Since its emergence in 2023, BlackSuit has demonstrated a sophisticated approach to infiltrating networks, leveraging double extortion tactics, and demanding substantial ransoms. The cases highlighted above illustrate the varied methods and persistence of BlackSuit attackers, from exploiting VPN vulnerabilities to abusing remote management tools and targeting off-hours to maximize impact.

Although many similar connection patterns, such as the abuse of Bublup services for data exfiltration or the use of SOCKS5 proxies for C2, were observed during cases investigated by Darktrace, BlackSuit actors are highly sophisticated and tailors their attacks to each target organization. The consequences of a successful attack can be highly disruptive, and remediation efforts can be time-consuming and costly. This includes taking the entire network offline while responding to the incident, restoring encrypted files from backups (if available), dealing with damage to the organization’s reputation, and potential lawsuits.

These BlackSuit ransomware incidents emphasize the need for continuous vigilance, timely updates to security protocols, and the adoption of autonomous response technologies to swiftly counteract such attacks. As ransomware tactics continue to evolve, organizations must remain agile and informed to protect their critical assets and data. By learning from these incidents and enhancing their cybersecurity frameworks, organizations can better defend against the relentless threat of ransomware and ensure the resilience of their operations in an increasingly digital world.

Credit to Signe Zaharka (Principal Cyber Analyst) and Adam Potter (Senior Cyber Analyst)

Insights from Darktrace’s First 6: Half-year threat report for 2024

First 6: half year threat report darktrace screenshot

Darktrace’s First 6: Half-Year Threat Report 2024 highlights the latest attack trends and key threats observed by the Darktrace Threat Research team in the first six months of 2024.

  • Focuses on anomaly detection and behavioral analysis to identify threats
  • Maps mitigated cases to known, publicly attributed threats for deeper context
  • Offers guidance on improving security posture to defend against persistent threats

Appendices

Darktrace Model Detections

Anomalous Connection / Data Sent to Rare Domain

Anomalous Connection / High Volume of New or Uncommon Service Control

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / Rare WinRM Outgoing

Anomalous Connection / SMB Enumeration

Anomalous Connection / Suspicious Activity On High Risk Device

Anomalous Connection / Suspicious Read Write Ratio

Anomalous Connection / Suspicious Read Write Ratio and Unusual SMB

Anomalous Connection / Sustained MIME Type Conversion

Anomalous Connection / Uncommon 1 GiB Outbound

Anomalous Connection / Unusual Admin SMB Session

Anomalous File / Internal / Additional Extension Appended to SMB File

Anomalous File / Internal / Executable Uploaded to DC

Anomalous File / Internal / Unusual SMB Script Write

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Anomalous Server Activity / Outgoing from Server

Anomalous Server Activity / Rare External from Server

Anomalous Server Activity / Write to Network Accessible WebRoot

Compliance / Outgoing NTLM Request from DC

Compliance / Remote Management Tool On Server

Compliance / SMB Drive Write

Compromise / Beacon to Young Endpoint

Compromise / Beaconing Activity To External Rare

Compromise / Ransomware / Possible Ransom Note Read

Compromise / Ransomware / Possible Ransom Note Write

Compromise / Ransomware / SMB Reads then Writes with Additional Extensions

Compromise / Ransomware / Suspicious SMB Activity

Device / Anomalous RDP Followed By Multiple Model Breaches

Device / EXE Files Distributed to Multiple Devices

Device / Internet Facing Device with High Priority Alert

Device / Large Number of Model Breaches

Device / Large Number of Model Breaches from Critical Network Device

Device / Multiple Lateral Movement Model Breaches

Device / Network Scan

Device / New or Uncommon WMI Activity

Device / New or Unusual Remote Command Execution

Device / New User Agent To Internal Server

Device / SMB Lateral Movement

Device / SMB Session Brute Force (Admin)

Device / Suspicious SMB Scanning Activity

Device / Unusual LDAP Query For Domain Admins

SaaS / Access / Teams Activity from Rare Endpoint

SaaS / Resource / SaaS Resources With Additional Extensions

SaaS / Unusual Activity / Disabled Strong Authentication

SaaS / Unusual Activity / Multiple Unusual SaaS Activity Scores

SaaS / Unusual Activity / Unusual SaaS Activity Score

SaaS / Unusual Activity / Unusual Volume of SaaS Modifications

Unusual Activity / Anomalous SMB Delete Volume

Unusual Activity / Anomalous SMB Move & Write

Unusual Activity / High Volume Client Data Transfer

Unusual Activity / High Volume Server Data Transfer

Unusual Activity / Internal Data Transfer

Unusual Activity / SMB Access Failures

Unusual Activity / Sustained Anomalous SMB Activity

Unusual Activity / Unusual External Data to New Endpoint

User / New Admin Credentials on Client

User / New Admin Credentials on Server

User/ Kerberos Password Bruteforce

Autonomous Response Models

Antigena / Network / External Threat / Antigena File then New Outbound Block

Antigena / Network / External Threat / Antigena Ransomware Block

Antigena / Network / External Threat / Antigena Suspicious Activity Block

Antigena / Network / External Threat / SMB Ratio Antigena Block

Antigena / Network / Insider Threat / Antigena Internal Anomalous File Activity

Antigena / Network / Insider Threat / Antigena Internal Data Transfer Block

Antigena / Network / Insider Threat / Antigena Large Data Volume Outbound Block

Antigena / Network / Insider Threat / Antigena Network Scan Block

Antigena / Network / Insider Threat / Antigena Unusual Privileged User Activities Block

Antigena / Network / Insider Threat / Antigena Unusual Privileged User Activities Pattern of Life Block

Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Antigena / Network / Significant Anomaly / Repeated Antigena Breaches

Antigena / SaaS / Antigena Unusual Activity Block

List of Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

.blacksuit - File extension – When encrypting the files, this extension is appended to the filename – High

readme.blacksuit.txt – ransom note - A file demanding cryptocurrency payment in exchange for decrypting the victim's files and not leaking the stolen data – High

mystuff.bublup[.]com, bublup-media-production.s3.amazonaws[.]com – data exfiltration domains related to an organization and project management app that has document sharing functionality – High

137.220.61[.]94:4001 – SystemBC C2 related IP address (this tool is often used by other ransomware groups as well) - Medium

173.251.109[.]106 – IP address seen during a SaaS BlackSuit compromise (during file encryption) – Medium

216.151.180[.]147 – IP address seen during a SaaS BlackSuit compromise (during an unusual Teams session) - Medium

MITRE ATT&CK Mapping

Tactic - Technqiue

Account Manipulation - PERSISTENCE - T1098

Alarm Suppression - INHIBIT RESPONSE FUNCTION - T0878

Application Layer Protocol - COMMAND AND CONTROL - T1071

Automated Collection - COLLECTION - T1119

Block Command Message - INHIBIT RESPONSE FUNCTION - T0803

Block Reporting Message - INHIBIT RESPONSE FUNCTION - T0804

Browser Extensions - PERSISTENCE - T1176

Brute Force I/O - IMPAIR PROCESS CONTROL - T0806

Brute Force - CREDENTIAL ACCESS - T1110

Client Configurations - RECONNAISSANCE - T1592.004 - T1592

Cloud Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078.004 - T1078

Data Destruction - IMPACT - T1485

Data Destruction - INHIBIT RESPONSE FUNCTION - T0809

Data Encrypted for Impact - IMPACT - T1486

Data from Cloud Storage Object - COLLECTION - T1530

Data Staged - COLLECTION - T1074

Domain Groups - DISCOVERY - T1069.002 - T1069

Email Collection - COLLECTION - T1114

Exfiltration Over C2 Channel - EXFILTRATION - T1041

Exfiltration to Cloud Storage - EXFILTRATION - T1567.002 - T1567

Exploit Public - Facing Application - INITIAL ACCESS - T1190

Exploitation for Privilege Escalation - PRIVILEGE ESCALATION - T0890

Exploitation of Remote Services - LATERAL MOVEMENT - T1210

File and Directory Discovery - DISCOVERY - T1083

File Deletion - DEFENSE EVASION - T1070.004 - T1070

IP Addresses - RECONNAISSANCE - T1590.005 - T1590

Lateral Tool Transfer - LATERAL MOVEMENT - T1570

LLMNR/NBT - NS Poisoning and SMB Relay - CREDENTIAL ACCESS, COLLECTION - T1557.001 - T1557

Modify Alarm Settings - INHIBIT RESPONSE FUNCTION - T0838

Modify Control Logic - IMPAIR PROCESS CONTROL, INHIBIT RESPONSE FUNCTION - T0833

Modify Parameter - IMPAIR PROCESS CONTROL - T0836

Network Service Scanning - DISCOVERY - T1046

Network Share Discovery - DISCOVERY - T1135

Pass the Hash - DEFENSE EVASION, LATERAL MOVEMENT - T1550.002 - T1550

RDP Hijacking - LATERAL MOVEMENT - T1563.002 - T1563

Remote Access Software - COMMAND AND CONTROL - T1219

Remote Desktop Protocol - LATERAL MOVEMENT - T1021.001 - T1021

Remote System Discovery - DISCOVERY - T1018

Rename System Utilities - DEFENSE EVASION - T1036.003 - T1036

Scanning IP Blocks - RECONNAISSANCE - T1595.001 - T1595

Scheduled Transfer - EXFILTRATION - T1029

Service Execution - EXECUTION - T1569.002 - T1569

Service Stop - IMPACT - T1489

SMB/Windows Admin Shares - LATERAL MOVEMENT - T1021.002 - T1021

Stored Data Manipulation - IMPACT - T1565.001 - T1565

Taint Shared Content - LATERAL MOVEMENT - T1080

Valid Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078

Vulnerability Scanning - RECONNAISSANCE - T1595.002 - T1595

Web Protocols - COMMAND AND CONTROL - T1071.001 - T1071

Web Services - RESOURCE DEVELOPMENT - T1583.006 - T1583

Web Shell - PERSISTENCE - T1505.003 - T1505

Windows Management Instrumentation - EXECUTION - T1047

Windows Remote Management - LATERAL MOVEMENT - T1021.006 - T1021

References

1.     https://www.trendmicro.com/en_us/research/23/e/investigating-blacksuit-ransomwares-similarities-to-royal.html

2.     https://www.reuters.com/technology/cybersecurity/blacksuit-hacker-behind-cdk-global-attack-hitting-us-car-dealers-2024-06-27/

3.     https://www.sentinelone.com/anthology/blacksuit/

4.     https://thehackernews.com/2024/08/fbi-and-cisa-warn-of-blacksuit.html

5.     https://www.techtarget.com/whatis/feature/The-CDK-Global-outage-Explaining-how-it-happened

6.     https://therecord.media/japanese-media-kadokawa-investigating-cyber

7.     https://therecord.media/plasma-donation-company-cyberattack-blacksuit

8.     https://thecyberexpress.com/government-of-brazil-cyberattack-by-blacksuit/

9.     https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-061a

Continue reading
About the author
Signe Zaharka
Senior Cyber Security Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI