Blog
/

OT

/
January 9, 2024

Three Ways AI Secures OT & ICS from Cyber Attacks

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Jan 2024
Explore the three challenges facing industries that manage OT and ICS Systems, the benefits of adopting AI technology, and Darktrace / OT’s unique role!

What is OT and ICS?

Operational technologies and industrial control systems are the networked technologies used for the automation of physical processes. These are the technologies that allow operators to control processes and retrieve real time process data from a factory, rail system, pipeline, and other industrial processes.  

The role of AI in defending OT/ICS networks  

While largely adopted by industrial organizations, OT is utilized by Critical Infrastructures, these being the industries that directly affect the health, safety, and welfare of the public. As these organizations expand and adopt new networked industrial technologies, they are simultaneously expanding their attack surface.  

With a larger attack surface, more attacks targeting OT/ICS, and focused coordination around cyber security from regulatory authorities, security personnel have increasing workloads that make it difficult to keep pace with threats and vulnerabilities. Defenders are managing growing attack surfaces due to IT and OT convergence. Thus, the adoption of AI technology to protect, detect, respond, and recover from cyber incidents in industrial systems is paramount for keeping critical infrastructure safe.

This blog will explore three challenges facing industries managing OT/ICS, the perceived benefits of adopting AI technology to address these challenges, and Darktrace/OT’s unique role in this process.  

Darktrace also delivers complete AI-powered solutions to defend US federal government customers from cyber disruptions and ensure mission resilience. Learn more about high fidelity detection in Darktrace Federal’s TAC report.

Figure 1: AI statistics from Gartner and Deloitte

Three ways AI helps improves OT/ICS security  

1. Anomaly detection and response

In this heightened security landscape, OT/ICS environments face a spectrum of external cyber threats that demand vigilant defense. From the looming risk of industrial ransomware to the threat of insiders, yet another dimension is added to security challenge, meaning security professionals must be equipped to detect and respond to internal and external threats.  

While threats are eminent from both inside and outside the organization, many organizations rely on Indicator of Compromises (IOCs) for threat detection. By definition, these solutions can only detect network activity they recognize as an indicator of compromise; therefore, often miss insider threats and novel (zero-day) attacks because the tactics, techniques, and procedures (TTPs) and attack toolkits have never been seen in practice.  

Anomaly-based detection is best suited to combat never-before-seen threats and signatureless threats from the inside. However, not all detection methods are equal. Most anomaly-based detection solutions that leverage AI rely on a combination of supervised machine learning, deep learning, and transformers to train and inform their systems. This entails shipping your company’s data out to a large data lake housed somewhere in the cloud where it gets blended with attack data from thousands of other organizations. This data set gets used to train AI systems — yours and everyone else’s — to recognize patterns of attack based on previously encountered threats.  

While this method reduces the workload for security teams who would have to input attack data otherwise manually, it runs the same risk of only detecting known threats and has potential privacy concerns when shipping this data externally.  

To improve the quality and speed of anomaly detection, Darktrace/OT uses Self-Learning AI that leverages Bayesian Probabilistic Methodologies, Graph Theory, and Deep Neural Networks to learn your organization from the ground up in real time. By learning your unique organization, Darktrace/OT develops a sophisticated baseline knowledge of your network and assets, identifying abnormal activity that indicates a threat based on your unique network data at machine speed. Because the AI engine is local to the organization and/or assets, concerns of data residency and privacy are reduced, and the result is faster time to detect and triage incidents.  

Leveraging Self-Learning AI, Darktrace/OT uses autonomous response that severs only the anomalous or risky behaviors allowing the assets to continue to operate as normal. Organizations work with Darktrace to customize how they want Darktrace’s autonomous response to be applied. These options vary from on a device- by-device basis, device type by device type, or subnet by subnet basis and can be done completely autonomously or in human confirmation mode. This gives security teams more time to respond to an incident and reduces operational downtime when facing a threat.  

Darktrace leverages a combination of AI methods:

  • Self-Learning AI
  • Bayesian classification probabilistic models  
  • Deep neural networks
  • Transformers
  • Graph theory models
  • Clustering models  
  • Anomaly detection models
  • Generative and applied AI  
  • Natural language processing  
  • Supervised machine learning for investigation process of alerts

2. Vulnerability & Asset Management

At present, managing OT cyber risk is labor and resource intensive. Many organizations use third-party auditors to identify assets and vulnerabilities, grade compliance, and recommend improvements.  

At best, these exercises become tick-box exercises for companies to stay in compliance with little measurable reduction in cyber risk. At worst, asset owners can be left with a mountain of vulnerability information to work through, much of it irrelevant to the security risks Engineering and Operations teams deal with day to day, and increasingly out of date each passing day after the annual or biannual audit has been completed.  

In both cases, organizations are left using a patchwork of point products to address different aspects of preventative OT cyber security, most of which lack wider business context and lead to costly inefficiencies with no real impact to vulnerability or risk exposure.  

Darktrace’s technology helps in three unique ways:

  1. AI populates asset inventories: Self-Learning AI technology listens and learns from network traffic to populate or update asset inventories. It does this not just by identifying simple IPs, mac addresses, and hostnames, it learns from what it sees and automatically classifies or tags specific types of assets with the function that they perform. For example, if a specific device is performing functions like a PLC, sending commands to and from an HMI, it can appropriately tag and label these systems.
  2. AI prioritizes risk: Leveraging Bayesian Probabilistic Methodologies, Graph Theory, and Deep Neural Networks, Darktrace/OT assesses the strategic risks facing your organization in real time. Using knowledge of data points on all your networked assets, data flow topology, your assets vulnerabilities and OSINT, Darktrace identifies and prioritizes high-value assets, potential attack pathways based on an existing vulnerabilities targetability and impact.
  3. AI explains remediation tactics: Many OT devices run 24/7 operations and cannot be taken offline to apply a patch, assuming a patch is even available. Darktrace/OT uses natural language processing to provide and explain prioritized remediation and mitigation associated with a given cyber risk across all MITRE ATT&CK techniques. Thus, where a CVE exists but a patch cannot be applied, a different technical mitigation can be recommended to remove a potential attack path before it can be exploited, preemptively securing vital internal systems and assets.
Figure 2: A critical attack path which starts with the compromise of a PC in the internal IT network, and ends with a PLC in the OT network. Each step is mapped out to the real world TTPs including abuse of SSH sessions and the modifications of ICS programs

3. Simplify compliance and reporting

Organizations, regardless of size or resources, have compliance regulations they need to adhere to. What this creates is an increased workload for security professionals. For smaller organizations, security teams might lack the manpower or resources to report in the short time frame that is required. For large organizations, keeping track of a massive amount of assets proves to be a challenge. Both cases emanate the risk of reporting fatigue where organizations might be hesitant to report incidents due to the complexity and time requirements they demand.  

An AI engine within the Darktrace/OT platform, Cyber AI analyst autonomously investigates incidents, summarize findings in natural language, and provides comprehensive insights into the nature and scope of cyber threats to improve the time it takes to triage and report on incidents. The ability to stitch together and present related security events provides a holistic understanding of the incident, enabling security analysts to identify patterns, assess the scope of potential threats, and prioritize responses effectively.  

Darktrace's detection capabilities identify every stage of an intrusion, from a compromised domain controller to network reconnaissance and privilege escalation. The AI technology is capable of detecting infections across several devices and generating incident reports that piece together disparate events to give a clear security narrative containing details of the attack, bridging the communication gap between IT and OT specialists.  

Post-incident, the technology assists in outlining timelines, discerning compromised data, pinpointing unusual activities, and aiding security teams in proactive threat mitigation.  

With its capabilities, organizations can swiftly understand the attack timeline, affected assets, unauthorized accesses, compromised data points, and malicious interactions, facilitating appropriate communication and action. For example, when Cyber AI Analyst shows an attack path, the security team gains insight on the segmentation or lack thereof between two subnets allowing the security team to appropriately segment the subnets.  

Cyber AI improves critical infrastructure operators’ ability to report major cyber-attacks to regulatory authorities. Considering that 72 hours is the reporting period for most significant incidents — and 24 hours for ransomware payments — Cyber AI Analyst is no longer a nice-to-have but a must-have for critical infrastructure.

Figure 3: The tabs labeled 1-4 denote model breaches, each with a specific action and severity indicated by color dots. Darktrace integrates these breaches, offering the security team a unified view of interconnected security events.  

The right AI for the right challenge

Incident Phase:

Protect

Role of AI:

Cyber risk prioritization

Attack path modelling

Compliance reporting

Darktrace Product:

PREVENT/OT

Incident Phase:

Detect

Role of AI:

Anomaly detection

Triaging and investigating

Darktrace Product:

Cyber AI analyst

DETECT/OT

Incident Phase:

Respond

Role of AI: 

Autonomous response  

Incident reporting

Darktrace Product:

RESPOND/OT

Incident Phase:

Recover

Role of AI:

Incident preparedness

Incident simulations

Darktrace Product:

HEAL

Credit to: Nicole Carignan, VP of Strategic Cyber AI - Kendra Gonzalez Duran, Director of Technology Innovation - & Daniel Simonds, Director of Operational Technology for their contribution to this blog.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Oakley Cox
Director of Product

Oakley is a Product Manager within the Darktrace R&D team. He collaborates with global customers, including all critical infrastructure sectors and Government agencies, to ensure Darktrace/OT remains the first in class solution for OT Cyber Security. He draws on 7 years’ experience as a Cyber Security Consultant to organizations across EMEA, APAC and ANZ. His research into cyber-physical security has been published by Cyber Security journals and by CISA. Oakley has a Doctorate (PhD) from the University of Oxford.

Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

November 19, 2024

/
No items found.

Darktrace Leading the Future of Network Detection and Response with Recognition from KuppingerCole

Default blog imageDefault blog image

KuppingerCole has recognized Darktrace as an overall Leader, Product Leader, Market Leader and Innovation Leader in the KuppingerCole Leadership Compass: Network Detection and Response (2024).

With the perimeter all but dissolved, Network Detection and Response (NDR) tools are quickly becoming a critical component of the security stack, as the main tool to span the modern network. NDRs connect on-premises infrastructure to cloud, remote workers, identities, SaaS applications, and IoT/OT – something not available to EDR that requires agents and isolates visibility to individual devices.

KuppingerCole Analysts AG designated Darktrace an ‘Overall Leader’ position because of our continual innovation around user-led security. Self-Learning AI together with automated triage through Cyber AI Analyst and real-time autonomous response actions have been instrumental to security teams in stopping potential threats before they become a breach. With this time saved, Darktrace is leading beyond reactive security to truly harden a network, allowing the team to spend more time in preventive security measures.

Network Detection and Response protects where others fail to reach

NDR solutions operate at the network level, deploying inside or parallel to your network to ingest raw traffic via virtual or physical sensors. This gives them unprecedented potential to identify anomalies and possible breaches in any network - far beyond simple on-prem, into dynamic virtual environments, cloud or hybrid networks, cloud applications, and even remote devices accessing the corporate network via ZTNA or VPN.

Rather than looking at processes level data, NDR can detect the lateral movement of an adversary across multiple assets by analyzing network traffic patterns which endpoint solutions may not be able to identify [1]. In the face of a growing, complex environment, organizations large and small, will benefit from using NDRs either in conjunction, or as the foundation for, their Extended Detection and Response (XDR) for a unified view that improves their overall threat detection, ease of investigation and faster response times.

Today's NDR solutions are expected to include advanced ML and artificial intelligence (AI) algorithms [1]

Traditional IDS & IPS systems are labor intensive, requiring continuous rule creation, outdated signature maintenance, and manual monitoring for false positives or incorrect actions. This is no longer viable against a higher volume and changing landscape, making NDR the natural network tool to level against these evolutions. The role of AI in NDRs is designed to meet this challenge, “to reduce both the labor need for analysis and false positives, as well as add value by improving anomaly detection and overall security posture” .

Celebrating success in leadership and innovation

Darktrace is proud to have been recognized as an NDR “Overall Leader” in KuppingerCole Analyst AG’s Leadership Compass. The report gave further recognition to Darktrace as a ‘Product Leader”, “Innovation Leader” and “Market Leader”.

Maximum scores were received for core product categories, in addition to market presence and financial strength. Particular attention was directed to our innovation. This year has seen several NDR updates via Darktrace’s ActiveAI Security Platform version 6.2 which has enhanced investigation workflows and provided new AI transparency within the toolset.

Positive scores were also received for Darktrace’s deployment ecosystem and surrounding support, minimizing the need for extraneous integrations through a unique platform architecture that connects with over 90 other vendors.

High Scores received in Darktrace’s KuppingerCole Spider Chart across Core NDR capability areas
Figure 1: High Scores received in Darktrace’s KuppingerCole Spider Chart across Core NDR capability areas

Darktrace’s pioneering AI approach sets it apart

Darktrace / NETWORK’s approach is fundamentally different to other NDRs. Continual anomaly-based detection (our Self-Learning AI), understands what is normal across each of your network entities, and then examines deviations from these behaviors rather than needing to apply static rules or ML to adversary techniques. As a result, Darktrace / NETWORK can focus on surfacing the novel threats that cannot be anticipated, whilst our proactive solutions expose gaps that can be exploited and reduce the risk of known threats.    

Across the millions of possible network events that may occur, Darktrace’s Cyber AI Analyst reduces that manual workload for SOC teams by presenting only what is most important in complete collated incidents. This accelerates SOC Level 2 analyses of incidents by 10x2, giving time back, first for any necessary response and then for preventive workflows.

Finally, when incidents begin to escalate, Darktrace can natively (or via third-party) autonomously respond and take precise actions based on a contextual understanding of both the affected assets and incident in question so that threats can be disarmed without impacting wider operations.

Within the KuppingerCole report, several standout strengths were listed:

  • Cyber AI Analyst was celebrated as a core differentiator, enhancing both visibility and investigation into critical network issues and allowing a faster response.
  • Darktrace / NETWORK was singled for its user benefits. Both a clear interface for analysts with advanced filtering and analytical tools, and efficient role-based access control (RBAC) and configuration options for administrators.
  • At the product level, Darktrace was recognized for complete network traffic analysis (NTA) capabilities allowing extensive analysis into components like application use/type, fingerprinting, source/destination communication, in addition to comprehensive protocol support across a range of network device types from IT, OT, IoT and mobiles and detailed MITRE ATT&CK mapping.
  • Finally, at the heart of it, Darktrace’s innovation was highlighted in relation to its intrinsic Self Learning AI, utilizing multiple layers of deep learning, neural networks, LLMs, NLP, Generative AI and more to understand network activity and filter it for what’s critical on an individual customer level.

Going beyond reactive security

Darktrace’s visibility and AI-enabled detection, investigation and response enable security teams to focus on hardening gaps in their network through contextual relevance & priority. Darktrace / NETWORK explicitly gives time back to security teams allowing them to focus on the bigger strategic and governance workflows that sometimes get overlooked. This is enabled through proactive solutions intrinsically connected to our NDR:

  • Darktrace / Proactive Exposure Management, which looks beyond just CVE risks to instead discover, prioritize and validate risks by business impact and how to mobilize against them early, to reduce the number of real threats security teams face.
  • Darktrace / Incident Readiness & Recovery, a solution rather than service-based approach to incident response (IR) that lets teams respond in the best way to each incident and proactively test their familiarity and effectiveness of IR workflows with sophisticated incident simulations involving their own analysts and assets.

Together, these solutions allow Darktrace / NETWORK to go beyond the traditional NDR and shift teams to a more hardened and proactive state.

Putting customers first

Customers continue to sit at the forefront of Darktrace R&D, with their emerging needs and pain points being the direct inspiration for our continued innovation.

This year Darktrace / NETWORK has protected thousands of customers against the latest attacks, from data exfil and destruction, to unapproved privilege escalation and ransomware including strains like Medusa, Qilin and AlphV BlackCat.

In each instance, Darktrace / NETWORK was able to provide a holistic lens of the anomalies present in their traffic, collated those that were important, and either responded or gave teams the ability to take targeted actions against their threats – even when adversaries pivoted. In one example of a Gootloader compromise, Darktrace ensured a SOC went from detection to recovery within 5 days, 92.8% faster than the average containment time of 69 days.

Results like these, focused on user-led security, have secured Darktrace’s position within the latest NDR Leadership Compass.

To find out more about what makes Darktrace / NETWORK special, read the full KuppingerCole report.

References

[1] Osman Celik, KuppingerCole Leadership Compass:Network Detection and Response (2024)

[2] Darktrace's AI Analyst customer fleet data

[3] https://www.ibm.com/reports/data-breach

Continue reading
About the author
Gabriel Few-Wiegratz
Product Marketing Manager

Blog

/

November 1, 2024

/

Inside the SOC

Phishing and Persistence: Darktrace’s Role in Defending Against a Sophisticated Account Takeover

Default blog imageDefault blog image

The exploitation of SaaS platforms

As businesses continue to grow and evolve, the need for sharing ideas through productivity and cloud Software-as-a-Service (SaaS) platforms is becoming increasingly crucial. However, these platforms have also become prime targets for cyber attackers.

Threat actors often exploit these widely-used services to gain unauthorized access, steal sensitive information, and disrupt business operations. The growing reliance on SaaS platforms makes them attractive entry points for cybercriminals, who use sophisticated techniques such as phishing, social engineering, and malware to compromise these systems.

Services like Microsoft 365 are regularly targeted by threat actors looking for an entry point into an organization’s environment to carry out malicious activities. Securing these platforms is crucial to protect business data and ensure operational continuity.

Darktrace / EMAIL detection of the phishing attack

In a recent case, Darktrace observed a customer in the manufacturing sector receiving a phishing email that led to a threat actor logging in and creating an email rule. Threat actors often create email rules to move emails to their inbox, avoiding detection. Additionally, Darktrace detected a spoofed domain registered by the threat actor. Despite already having access to the customer’s SaaS account, the actor seemingly registered this domain to maintain persistence on the network, allowing them to communicate with the spoofed domain and conduct further malicious activity.

Darktrace / EMAIL can help prevent compromises like this one by blocking suspicious emails as soon as they are identified. Darktrace’s AI-driven email detection and response recognizes anomalies that might indicate phishing attempts and applies mitigative actions autonomously to prevent the escalation of an attack.

Unfortunately, in this case, Darktrace was not configured in Autonomous Response mode at the time of the attack, meaning actions had to be manually applied by the customer’s security team. Had it been fully enabled, it would have held the emails, preventing them from reaching the intended recipient and stopping the attack at its inception.

However, Darktrace’s Managed Threat Detection alerted the Security Operations Center (SOC) team to the compromise, enabling them to thoroughly investigate the incident and notify the customer before further damage could occur.

The Managed Threat Detection service continuously monitors customer networks for suspicious activities that may indicate an emerging threat. When such activities are detected, alerts are sent to Darktrace’s expert Cyber Analysts for triage, significantly speeding up the remediation process.

Attack Overview

On May 2, 2024, Darktrace detected a threat actor targeting a customer in the manufacturing sector then an unusual login to their SaaS environment was observed prior to the creation of a new email rule.

Darktrace immediately identified the login as suspicious due to the rarity of the source IP (31.222.254[.]27) and ASN, coupled with the absence of multi-factor authentication (MFA), which was typically required for this account.

The new email rule was intended to mark emails as read and moved to the ‘Conversation History’ folder for inbound emails from a specific domain. The rule was named “….,,,”, likely the attacker attempting to setup their new rule with an unnoteworthy name to ensure it would not be noticed by the account’s legitimate owner. Likewise, by moving emails from a specific domain to ‘Conversation History’, a folder that is rarely used by most users, any phishing emails sent by that domain would remain undetected by the user.

Darktrace’s detection of the unusual SaaS login and subsequent creation of the new email rule “….,,,”.
Figure 1: Darktrace’s detection of the unusual SaaS login and subsequent creation of the new email rule “….,,,”.

The domain in question was identified as being newly registered and an example of a typosquat domain. Typosquatting involves registering new domains with intentional misspelling designed to convince users to visit fake, and often malicious, websites. This technique is often used in phishing campaigns to create a sense of legitimacy and trust and deceive users into providing sensitive information. In this case, the suspicious domain closely resembled several of the customer’s internal domains, indicating an attempt to impersonate the organization’s legitimate internal sites to gain the target’s trust. Furthermore, the creation of this lookalike domain suggests that the attack was highly targeted at this specific customer.

Interestingly, the threat actor registered this spoofed domain despite already having account access. This was likely intended to ensure persistence on the network without having to launch additional phishing attacks. Such use of spoofed domain could allow an attacker to maintain a foothold in their target network and escalate their malicious activities without having to regain access to the account. This persistence can be used for various purposes, including data exfiltration, spreading malware, or launching further attacks.

Following this, Darktrace detected a highly anomalous email being sent to the customer’s account from the same location as the initial unsual SaaS login. Darktrace’s anomaly-based detection is able to identify threats that human security teams and traditional signature-based methods might miss. By analyzing the expected behavior of network users, Darktrace can recognize the subtle deviations from the norm that may indicate malicious activity. Unfortunately, in this instance, without Darktrace’s Autonomous Response capability enabled, the phishing email was able to successfully reach the recipient. While Darktrace / EMAIL did suggest that the email should be held from the recipients inbox, the customer was required to manually approve it.

Despite this, the Darktrace SOC team were still able to support the customer as they were subscribed to the Managed Threat Detection service. Following the detection of the highlight anomalous activity surrounding this compromise, namely the unusual SaaS login followed by a new email rule, an alert was sent to the Darktrace SOC for immediate triage, who then contacted the customer directly urging immediate action.

Conclusion

This case underscores the need to secure SaaS platforms like Microsoft 365 against sophisticated cyber threats. As businesses increasingly rely on these platforms, they become prime targets for attackers seeking unauthorized access and disruption.

Darktrace’s anomaly-based detection and response capabilities are crucial in identifying and mitigating such threats. In this instance, Darktrace detected a phishing email that led to a threat actor logging in and creating a suspicious email rule. The actor also registered a spoofed domain to maintain persistence on the network.

Darktrace / EMAIL, with its AI-driven detection and analysis, can block suspicious emails before they reach the intended recipient, preventing attacks at their inception. Meanwhile, Darktrace’s SOC team promptly investigated the activity and alerted the customer to the compromise, enabling them to take immediate action to remediate the issue and prevent any further damage.

Credit to Vivek Rajan (Cyber Security Analyst) and Ryan Traill (Threat Content Lead).

Appendices

Darktrace Model Detections

  • SaaS / Access / Unusual External Source for SaaS Credential Use
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active
  • SaaS / Resource / Unusual Access to Delegated Resource by Non Owner
  • SaaS / Email Nexus / Unusual Login Location Following Sender Spoof
  • Compliance / Anomalous New Email Rule
  • SaaS / Compromise / Unusual Login and New Email Rule

Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

31.222.254[.]27 – IP -  Suspicious Login Endpoint

MITRE ATT&CK Mapping

Tactic – Technqiue – Sub-technique of (if applicable)

Cloud Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078.004 - T1078

Cloud Service Dashboard – DISCOVERY - T1538

Compromise Accounts - RESOURCE DEVELOPMENT - T1586

Steal Web Session Cookie - CREDENTIAL ACCESS - T1539

Outlook Rules – PERSISTENCE - T1137.005 - T1137

Continue reading
About the author
Vivek Rajan
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI