Blog
/

Inside the SOC

/
March 19, 2024

Pikabot: Battling a Fast-Moving Loader Malware

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
19
Mar 2024
Discover how Darktrace tackled the Pikabot loader malware in 2023, the new tactics used, and how traditional security measures were bypassed.

How does Loader Malware work?

Throughout 2023, the Darktrace Threat Research team identified and investigated multiple strains of loader malware affecting customers across its fleet. These malicious programs typically serve as a gateway for threat actors to gain initial access to an organization’s network, paving the way for subsequent attacks, including additional malware infections or disruptive ransomware attacks.

How to defend against loader malware

The prevalence of such initial access threats highlights the need for organizations to defend against multi-phase compromises, where modular malware swiftly progresses from one stage of an attack to the next. One notable example observed in 2023 was Pikabot, a versatile loader malware used for initial access and often accompanied by secondary compromises like Cobalt Strike and Black Basta ransomware.

While Darktrace initially investigated multiple instances of campaign-like activity associated with Pikabot during the summer of 2023, a new campaign emerged in October which was observed targeting a Darktrace customer in Europe. Thanks to the timely detection by Darktrace DETECT™ and the support of Darktrace’s Security Operations Center (SOC), the Pikabot compromise was quickly shut down before it could escalate into a more disruptive attack.

What is Pikabot?

Pikabot is one of the latest modular loader malware strains that has been active since the first half of 2023, with several evolutions in its methodology observed in the months since. Initial researchers noted similarities to the Qakbot aka Qbot or Pinkslipbot and Mantanbuchus malware families, and while Pikabot appears to be a new malware in early development, it shares multiple commonalities with Qakbot [1].

First, both Pikabot and Qakbot have similar distribution methods, can be used for multi-stage attacks, and are often accompanied by downloads of Cobalt Strike and other malware strains. The threat actor known as TA577, which has also been referred to as Water Curupira, has been seen to use both types of malware in spam campaigns which can lead to Black Basta ransomware attacks [2] [3].Notably, a rise in Pikabot campaigns were observed in September and October 2023, shortly after the takedown of Qakbot in Operation Duck Hunt, suggesting that Pikabot may be serving as a replacement for initial access to target network [4].

How does Pikabot malware work?

Many Pikabot infections start with a malicious email, particularly using email thread hijacking; however, other cases have been distributed via malspam and malvertising [5]. Once downloaded, Pikabot runs anti-analysis techniques and checks the system’s language, self-terminating if the language matches that of a Commonwealth of Independent States (CIS) country, such as Russian or Ukrainian. It will then gather key information to send to a command-and-control (C2) server, at which point additional payload downloads may be observed [2]. Early response to a Pikabot infection is important for organizations to prevent escalation to a significant compromise such as ransomware.

Darktrace’s Coverage of Pikabot malware

Between April and July 2023, the Darktrace Threat Research team investigated Pikabot infections affected more than 15 customer environments; these attacks primarily targeted US and European organizations spanning multiple industries, and most followed the below lifecycle:

  1. Initial access via malspam or email, often outside of Darktrace’s scope
  2. Suspicious executable download from a URI in the format /\/[a-z0-9A-Z]{3,}\/[a-z0-9A-Z]{5,}/ and using a Windows PowerShell user agent
  3. C2 connections to IP addresses on uncommon ports including 1194 and 2078
  4. Some cases involved further C2 activity to Cobalt Strike endpoints

In October 2023, a second campaign emerged that largely followed the same attack pattern, with a notable difference that cURL was used for the initial payload download as opposed to PowerShell. All the Pikabot cases that Darktrace has observed since October 2023 have used cURL, which could indicate a shift in approach from targeting Windows devices to multi-operating system environments.

Figure 1: Timeline of the Pikabot infection over a 2-hour period.

On October 17, 2023, Darktrace observed a Pikabot infection on the network of a European customer after an internal user seemingly clicked a malicious link in a phishing email, thereby compromising their device. As the customer did not have Darktrace/Email™ deployed on their network, Darktrace did not have visibility over the email. Despite this, DETECT was still able to provide full visibility over the network-based activity that ensued.

Darktrace observed the device using a cURL user agent when initiating the download of an unusual executable (.exe) file from an IP address that had never previously been observed on the network. Darktrace further recognized that the executable file was attempting to masquerade as a different file type, likely to evade the detection of security teams and their security tools. Within one minute, the device began to communicate with additional unusual IP addresses on uncommon ports (185.106.94[.]174:5000 and 80.85.140[.]152:5938), both of which have been noted by open-source intelligence (OSINT) vendors as Pikabot C2 servers [6] [7].

Figure 2: Darktrace model breach Event Log showing the initial file download, immediately followed by a connection attempt to a Pikabot C2 server.

Around 40 minutes after the initial download, Darktrace detected the device performing suspicious DNS tunneling using a pattern that resembled the Cobalt Strike Beacon. This was accompanied by beaconing activity to a rare domain, ‘wordstt182[.]com’, which was registered only 4 days prior to this activity [8]. Darktrace observed additional DNS connections to the endpoint, ‘building4business[.]net’, which had been linked to Black Basta ransomware [2].

Figure 3: The affected device making successful TXT DNS requests to known Black Basta endpoints.

As this customer had integrated Darktrace with the Microsoft Defender, Defender was able to contextualize the DETECT model breaches with endpoint insights, such as known threats and malware, providing customers with unparalleled visibility of the host-level detections surrounding network-level anomalies.

In this case, the behavior of the affected device triggered multiple Microsoft Defender alerts, including one alert which linked the activity to the threat actor Storm-0464, another name for TA577 and Water Curupira. These insights were presented to the customer in the form of a Security Integration alert, allowing them to build a full picture of the ongoing incident.

Figure 4: Security Integration alert from Microsoft Defender in Darktrace, linking the observed activity to the threat group Storm-0464.

As the customer had subscribed to Darktrace’s Proactive Threat Notification (PTN) service, the customer received timely alerts from Darktrace’s SOC notifying them of the suspicious activity associated with Pikabot. This allowed the customer’s security team to quickly identify the affected device and remove it from their environment for remediation.

Although the customer did have Darktrace RESPOND™ enabled on their network, it was configured in human confirmation mode, requiring manual application for any RESPOND actions. RESPOND had suggested numerous actions to interrupt and contain the attack, including blocking connections to the observed Pikabot C2 addresses, which were manually actioned by the customer’s security team after the fact. Had RESPOND been enabled in autonomous response mode during the attack, it would have autonomously blocked these C2 connections and prevented the download of any suspicious files, effectively halting the escalation of the attack.

Nonetheless, Darktrace DETECT’s prompt identification and alerting of this incident played a crucial role in enabling the customer to mitigate the threat of Pikabot, preventing it from progressing into a disruptive ransomware attack.

Figure 5: Darktrace RESPOND actions recommended from the initial file download and throughout the C2 traffic, ranging from blocking specific connections to IP addresses and ports to enforcing a normal pattern of life for the source device.

Conclusion

Pikabot is just one recent example of a modular strain of loader known for its adaptability and speed, seamlessly changing tactics from one campaign to the next and utilizing new infrastructure to initiate multi-stage attacks. Leveraging commonly used tools and services like Windows PowerShell and cURL, alongside anti-analysis techniques, this malware can evade the detection and often bypass traditional security tools.

In this incident, Darktrace detected a Pikabot infection in its early stages, identifying an anomalous file download using a cURL user agent, a new tactic for this particular strain of malware. This timely detection, coupled with the support of Darktrace’s SOC, empowered the customer to quickly identify the compromised device and act against it, thwarting threat actors attempting to connect to malicious Cobalt Strike and Black Basta servers. By preventing the escalation of the attack, including potential ransomware deployment, the customer’s environment remained safeguarded.

Had Darktrace RESPOND been enabled in autonomous response mode at the time of this attack, it would have been able to further support the customer by applying targeted mitigative actions to contain the threat of Pikabot at its onset, bolstering their defenses even more effectively.

Credit to Brianna Leddy, Director of Analysis, Signe Zaharka, Senior Cyber Security Analyst

Appendix

Darktrace DETECT Models

Anomalous Connection / Anomalous SSL without SNI to New External

Anomalous Connection / Application Protocol on Uncommon Port

Anomalous Connection / Multiple Connections to New External TCP Port

Anomalous Connection / New User Agent to IP Without Hostname

Anomalous Connection / Powershell to Rare External

Anomalous Connection / Rare External SSL Self-Signed

Anomalous Connection / Repeated Rare External SSL Self-Signed

Anomalous File / EXE from Rare External Location

Anomalous File / Masqueraded File Transfer

Anomalous File / Multiple EXE from Rare External Locations

Compromise / Agent Beacon to New Endpoint

Compromise / Beacon to Young Endpoint

Compromise / Beaconing Activity To External Rare

Compromise / DNS / DNS Tunnel with TXT Records

Compromise / New or Repeated to Unusual SSL Port

Compromise / SSL Beaconing to Rare Destination

Compromise / Suspicious Beaconing Behaviour

Compromise / Suspicious File and C2

Device / Initial Breach Chain Compromise

Device / Large Number of Model Breaches

Device / New PowerShell User Agent

Device / New User Agent

Device / New User Agent and New IP

Device / Suspicious Domain

Security Integration / C2 Activity and Integration Detection

Security Integration / Egress and Integration Detection

Security Integration / High Severity Integration Detection

Security Integration / High Severity Integration Incident

Security Integration / Low Severity Integration Detection

Security Integration / Low Severity Integration Incident

Antigena / Network / External Threat / Antigena File then New Outbound Block

Antigena / Network / External Threat / Antigena Suspicious Activity Block

Antigena / Network / External Threat / Antigena Suspicious File Block

Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block

Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

Antigena / Network / Significant Anomaly / Antigena Significant Security Integration and Network Activity Block

List of Indicators of Compromise (IoC)

IOC - TYPE - DESCRIPTION + CONFIDENCE

128.140.102[.]132 - IP Address - Pikabot Download

185.106.94[.]174:5000 - IP Address: Port - Pikabot C2 Endpoint

80.85.140[.]152:5938 - IP Address: Port - Pikabot C2 Endpoint

building4business[.]net - Hostname - Cobalt Strike DNS Beacon

wordstt182[.]com - Hostname - Cobalt Strike Server

167.88.166[.]109 - IP Address - Cobalt Strike Server

192.9.135[.]73 - IP - Pikabot C2 Endpoint

192.121.17[.]68 - IP - Pikabot C2 Endpoint

185.87.148[.]132 - IP - Pikabot C2 Endpoint

129.153.22[.]231 - IP - Pikabot C2 Endpoint

129.153.135[.]83 - IP - Pikabot C2 Endpoint

154.80.229[.]76 - IP - Pikabot C2 Endpoint

192.121.17[.]14 - IP - Pikabot C2 Endpoint

162.252.172[.]253 - IP - Pikabot C2 Endpoint

103.124.105[.]147 - IP - Likely Pikabot Download

178.18.246[.]136 - IP - Pikabot C2 Endpoint

86.38.225[.]106 - IP - Pikabot C2 Endpoint

198.44.187[.]12 - IP - Pikabot C2 Endpoint

154.12.233[.]66 - IP - Pikabot C2 Endpoint

MITRE ATT&CK Mapping

TACTIC - TECHNIQUE

Defense Evasion - Masquerading: Masquerade File Type (T1036.008)

Command and Control - Application Layer Protocol: Web Protocols (T1071.001)

Command and Control - Non-Standard Port (T1571)

Command and Control - Application Layer Protocol: DNS (T1071.004)

Command and Control - Protocol Tunneling (T1572)

References

[1] https://news.sophos.com/en-us/2023/06/12/deep-dive-into-the-pikabot-cyber-threat/?&web_view=true  

[2] https://www.trendmicro.com/en_be/research/24/a/a-look-into-pikabot-spam-wave-campaign.html

[3] https://thehackernews.com/2024/01/alert-water-curupira-hackers-actively.html

[4] https://www.darkreading.com/cyberattacks-data-breaches/pikabot-malware-qakbot-replacement-black-basta-attacks

[5] https://www.redpacketsecurity.com/pikabot-distributed-via-malicious-ads-6/

[6] https://www.virustotal.com/gui/ip-address/185.106.94.174/detection

[7] https://www.virustotal.com/gui/ip-address/80.85.140.152/detection

[8] https://www.domainiq.com/domain?wordstt182.com

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Brianna Leddy
Director of Analysis

Based in San Francisco, Brianna is Director of Analysis at Darktrace. She joined the analyst team in 2016 and has since advised a wide range of enterprise customers on advanced threat hunting and leveraging Self-Learning AI for detection and response. Brianna works closely with the Darktrace SOC team to proactively alert customers to emerging threats and investigate unusual behavior in enterprise environments. Brianna holds a Bachelor’s degree in Chemical Engineering from Carnegie Mellon University.

Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

November 28, 2024

/

Cloud

Cloud security: addressing common CISO challenges with advanced solutions

Default blog imageDefault blog image

Cloud adoption is a cornerstone of modern business with its unmatched potential for scalability, cost efficiency, flexibility, and net-zero targets around sustainability. However, as organizations migrate more workloads, applications, and sensitive data to the cloud it introduces more complex challenges for CISO’s. Let’s dive into the most pressing issues keeping them up at night—and how Darktrace / CLOUD provides a solution for each.

1. Misconfigurations: The Silent Saboteur

Misconfigurations remain the leading cause of cloud-based data breaches. In 2023 alone over 80%  of data breaches involved data stored in the cloud.1  Think open storage buckets or overly permissive permissions; seemingly minor errors that are easily missed and can snowball into major disasters. The fallout of breaches can be costly—both financially and reputationally.

How Darktrace / CLOUD Helps:

Darktrace / CLOUD continuously monitors your cloud asset configurations, learning your environment and using these insights to flag potential misconfigurations. New scans are triggered when changes take place, then grouped and prioritised intelligently, giving you an evolving and prioritised view of vulnerabilities, best practice and mitigation strategies.

2. Hybrid Environments: The Migration Maze

Many organizations are migrating to the cloud, but hybrid setups (where workloads span both on-premises and cloud environments) create unique challenges and visibility gaps which significantly increase complexity. More traditional and most cloud native security tooling struggles to provide adequate monitoring for these setups.

How Darktrace / CLOUD Helps:

Provides the ability to monitor runtime activity for both on-premises and cloud workloads within the same user interface. By leveraging the right AI solution across this diverse data set, we understand the behaviour of your on-premises workloads and how they interact with cloud systems, spotting unusual connectivity or data flow activity during and after the migration process.

This unified visibility enables proactive detection of anomalies, ensures seamless monitoring across hybrid environments, and provides actionable insights to mitigate risks during and after the migration process.

3. Securing Productivity Suites: The Last Mile

Cloud productivity suites like Microsoft 365 (M365) are essential for modern businesses and are often the first step for an organization on a journey to Infrastructure as a Service (IaaS) or Platform as a Service (PaaS) use cases. They also represent a prime target for attackers. Consider a scenario where an attacker gains access to an M365 account, and proceeds to; access sensitive emails, downloading files from SharePoint, and impersonating the user to send phishing emails to internal employees and external partners. Without a system to detect these behaviours, the attack may go unnoticed until significant damage is done.

How Darktrace helps:

Darktrace’s Active AI platform integrates with M365 and establishes an understanding of normal business activity, enabling the detection of abnormalities across its suite including Email, SharePoint and Teams. By identifying subtle deviations in behaviour, such as:

   •    Unusual file accesses

   •    Anomalous login attempts from unexpected locations or devices.

   •    Suspicious email forwarding rules created by compromised accounts.

Darktrace’s Autonomous Response can act precisely to block malicious actions, by disabling compromised accounts and containing threats before they escalate. Precise actions also ensure that critical business operations are maintained even when a response is triggered.  

4. Agent Fatigue: The Visibility Struggle

To secure cloud environments, visibility is critical. If you don’t know what’s there, how can you secure it? Many solutions require agents to be deployed on every server, workload, and endpoint. But managing and deploying agents across sprawling hybrid environments can be both complex and time-consuming when following change controls, and especially as cloud resources scale dynamically.

How Darktrace / CLOUD Helps:

Darktrace reduces or eliminates the need for widespread agent deployment. Its agentless by default, integrating directly with cloud environments and providing instant visibility without the operational headache. Darktrace ensures coverage with minimal friction. By intelligently graphing the relationships between assets and logically grouping your deployed Cloud resources, you are equipped with real-time visibility to quickly understand and protect your environment.

So why Darktrace / CLOUD?

Darktrace’s Self-Learning AI redefines cloud security by adapting to your unique environment, detecting threats as they emerge, and responding in real-time. From spotting misconfigurations to protecting productivity suites and securing hybrid environments. Darktrace / CLOUD simplifies cloud security challenges without adding operational burdens.

From Chaos to Clarity

Cloud security doesn’t have to be a game of endless whack-a-mole. With Darktrace / CLOUD, CISOs can achieve the visibility, control, and proactive protection they need to navigate today’s complex cloud ecosystems confidently.

[1] https://hbr.org/2024/02/why-data-breaches-spiked-in-2023

Continue reading
About the author
Adam Stevens
Director of Product, Cloud Security

Blog

/

November 28, 2024

/

Thought Leadership

Preparing for 2025: Darktrace's top 10 AI and cybersecurity predictions

Default blog imageDefault blog image

Each year, Darktrace's AI and cybersecurity experts reflect on the events of the past 12 months and predict the trends we expect to shape the cybersecurity landscape in the year ahead. In 2024, we predicted that the global elections, fast-moving AI innovations, and increasingly cloud-based IT environments would be key factors shaping the cyber threat landscape.

Looking ahead to 2025, we expect the total addressable market of cybercrime to expand as attackers add more tactics to their toolkits. Threat actors will continue to take advantage of the volatile geopolitical environment and cybersecurity challenges will increasingly move to new frontiers like space. When it comes to AI, we anticipate the innovation in AI agents in 2024 to pave the way for the rise of multi-agent systems in 2025, creating new challenges and opportunities for cybersecurity professionals and attackers alike.

Here are ten trends to watch for in 2025:

The overall Total Addressable Market (TAM) of cybercrime gets bigger

Cybercrime is a global business, and an increasingly lucrative one, scaling through the adoption of AI and cybercrime-as-a-service. Annual revenue from cybercrime is already estimated to be over $8 trillion, which we’ve found is almost 5x greater than the revenue of the Magnificent Seven stocks. There are a few key factors driving this growth.

The ongoing growth of devices and systems means that existing malware families will continue to be successful. As of October 2024, it’s estimated that more than 5.52 billion people (~67%) have access to the internet and sources estimate 18.8 billion connected devices will be online by the end of 2024. The increasing adoption of AI is poised to drive even more interconnected systems as well as new data centers and infrastructure globally.

At the same time, more sophisticated capabilities are available for low-level attackers – we’ve already seen the trickle-down economic benefits of living off the land, edge infrastructure exploitation, and identity-focused exploitation. The availability of Ransomware-as-a-Service (RaaS) and Malware-as-a-Service (MaaS) make more advanced tactics the norm. The subscription income that these groups can generate enables more adversarial innovation, so attacks are getting faster and more effective with even bigger financial ramifications.

While there has also been an increasing trend in the last year of improved cross-border law enforcement, the efficacy of these efforts remains to be seen as cybercriminal gangs are also getting more resilient and professionalized. They are building better back-up systems and infrastructure as well as more multi-national networks and supply chains.

Security teams need to prepare for the rise of AI agents and multi-agent systems

Throughout 2024, we’ve seen major announcements about advancements in AI agents from the likes of OpenAI, Microsoft, Salesforce, and more. In 2025, we’ll see increasing innovation in and adoption of AI agents as well as the emergence of multi-agent systems (or “agent swarms”), where groups of autonomous agents work together to tackle complex tasks.

The rise of AI agents and multi-agent systems will introduce new challenges in cybersecurity, including new attack vectors and vulnerabilities. Security teams need to think about how to protect these systems to prevent data poisoning, prompt injection, or social engineering attacks.

One benefit of multi-agent systems is that agents can autonomously communicate, collaborate, and interact. However without clear and distinct boundaries and explicit permissions, this can also pose a major data privacy risk and avenue for manipulation. These issues cannot be addressed by traditional application testing alone. We must ensure these systems are secure by design, where robust protective mechanisms and data guardrails are built into the foundations.

Threat actors will be the earliest adopters of AI agents and multi-agent systems

We’ve already seen how quickly threat actors have been able to adopt generative AI for tasks like email phishing and reconnaissance. The next frontier for threat actors will be AI agents and multi-agent systems that are specialized in autonomous tasks like surveillance, initial access brokering, privilege escalation, vulnerability exploitation, data summarization for smart exfiltration, and more. Because they have no concern for safe, secure, accurate, and responsible use, adversaries will adopt these systems faster than cyber defenders.

We could also start to see use cases emerge for multi-agent systems in cyber defense – with potential for early use cases in incident response, application testing, and vulnerability discovery. On the whole, security teams will be slower to adopt these systems than adversaries because of the need to put in place proper security guardrails and build trust over time.

There is heightened supply chain risk for Large Language Models (LLMs)

Training LLMs requires a lot of data, and many experts have warned that world is running out of quality data for that training. As a result, there will be an increasing reliance on synthetic data, which can introduce new issues of accuracy and efficacy. Moreover, data supply chain risks will be an Achilles heel for organizations, with the potential interjection of vulnerabilities through the data and machine learning providers that they rely on. Poisoning one data set could have huge trickle-down impacts across many different systems. Data security will be paramount in 2025.

The race to identify software vulnerabilities intensifies

The time it takes for threat actors to exploit newly published CVEs is getting shorter, giving defenders an even smaller window to apply patches and remediations. A 2024 report from Cloudflare found that threat actors quickly weaponized proof of concept exploits in attacks as quickly as 22 minutes after the exploits were made public.

At the same time, 2024 also saw the first reports from researchers across academia and the tech industry using AI for vulnerability discovery in real-world code. With threat actors getting faster at exploiting vulnerabilities, defenders will need to use AI to identify vulnerabilities in their software stack and to help identify and prioritize remediations and patches.

Insider threat risks will force organizations to evolve zero trust strategies

In 2025, an increasingly volatile geopolitical situation and the intensity of the AI race will make insider threats an even bigger risk for businesses, forcing organizations to expand zero-trust strategies. The traditional zero-trust model provides protection from external threats to an organization’s network by requiring continuous verification of the devices and users attempting to access critical business systems, services, and information from multiple sources. However, as we have seen in the more recent Jack Teixeira case, malicious insiders can still do significant damage to an organization within their approved and authenticated boundary.

To circumvent the remaining security gaps in a zero-trust architecture and mitigate increasing risk of insider threats, organizations will need to integrate a behavioral understanding dimension to their zero-trust approaches. The zero-trust best practice of “never trust, always verify” needs to evolve to become “never trust, always verify, and continuously monitor.”

Identity remains an expensive problem for businesses

2024 saw some of the biggest and costliest attacks – all because the attacker had access to compromised credentials. Essentially, they had the key to the front door. Businesses still struggle with identity and access management (IAM), and it’s getting more complex now that we’re in the middle of a massive Software-as-a-Service (SaaS) migration driven by increasing rates of AI and cloud use across businesses.

This challenge is going to be exacerbated in 2025 by a few global and business factors. First, there is an increasing push for digital identities, such as the rollout of the EU Digital Identity Framework that is underway, which could introduce additional attack vectors. As they scale, businesses are turning more and more to centralized identity and access solutions with decentralized infrastructure and relying on SaaS and application-native security.

Increasing vulnerabilities at the edge

During the COVID-19 pandemic, many organizations had to stand-up remote access solutions quickly – in a matter of days or weeks – without the high level of due diligence that they require to be fully secured. In 2025, we expect to see continued fall-out as these quickly spun-up solutions start to present genuine vulnerability to businesses. We’ve already seen this start to play out in 2024 with the mass-exploitation of internet-edge devices like firewalls and VPN gateway products.

By July 2024, Darktrace’s threat research team observed that the most widely exploited edge infrastructure devices were those related to Ivanti Connect Secure, JetBrains TeamCity, FortiClient Enterprise Management Server, and Palo Alto Networks PAN-OS. Across the industry, we’ve already seen many zero days and vulnerabilities exploiting these internet-connected devices, which provide inroads into the network and store/cache credentials and passwords of other users that are highly valuable for threat actors.

Hacking Operational Technology (OT) gets easier

Hacking OT is notoriously complex – causing damage requires an intimate knowledge of the specific systems being targeted and historically was the reserve of nation states. But as OT has become more reliant and integrated with IT systems, attackers have stumbled on ways to cause disruption without having to rely on the sophisticated attack-craft normally associated with nation-state groups. That’s why some of the most disruptive attacks of the last year have come from hacktivist and financially-motivated criminal gangs – such as the hijacking of internet-exposed Programmable Logic Controllers (PLCs) by anti-Israel hacking groups and ransomware attacks resulting in the cancellation of hospital operations.  

In 2025, we expect to see an increase in cyber-physical disruption caused by threat groups motivated by political ideology or financial gain, bringing the OT threat landscape closer in complexity and scale to that of the IT landscape. The sectors most at risk are those with a strong reliance on IoT sensors, including healthcare, transportation, and manufacturing sectors.

Securing space infrastructure and systems becomes a critical imperative

The global space industry is growing at an incredibly fast pace, and 2025 is on track to be another record-breaking year for spaceflight with major missions and test flights planned by NASA, ESA, CNSA as well as the expected launch of the first commercial space station from Vast and programs from Blue Origin, Amazon and more. Research from Analysis Mason suggests that 38,000 additional satellites will be built and launched by 2033 and the global space industry revenue will reach $1.7 trillion by 2032. Space has also been identified as a focus area for the incoming US administration.

In 2025, we expect to see new levels of tension emerge as private and public infrastructure increasingly intersect in space, shining a light on the lack of agreed upon cyber norms and the increasing challenge of protecting complex and remote space systems against modern cyber threats.  Historically focused on securing earth-bound networks and environments, the space industry will face challenges as post-orbit threats rise, with satellites moving up the target list.

The EU’s NIS2 Directive now recognizes the space sector as an essential entity that is subject to its most strict cybersecurity requirements. Will other jurisdictions follow suit? We expect global debates about cyber vulnerabilities in space to come to the forefront as we become more reliant on space-based technology.

Preparing for the future

Whatever 2025 brings, Darktrace is committed to providing robust cybersecurity leadership and solutions to enterprises around the world. Our team of subject matter experts will continue to monitor emerging threat trends, advising both our customers and our product development teams.

And for day-to-day security, our multi-layered AI cybersecurity platform can protect against all types of threats, whether they are known, unknown, entirely novel, or powered by AI. It accomplishes this by learning what is normal for your unique organization, therefore identifying unusual and suspicious behavior at machine speed, regardless of existing rules and signatures. In this way, organizations with Darktrace can be ready for any developments in the cybersecurity threat landscape that the new year may bring.

Discover more about Darktrace's predictions on the AI and cybersecurity landscape for 2025 by joining the upcoming webinar on December 12, 2024 at 10:00am EST/3:00pm GMT. Register here.

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI