Blog
/

Inside the SOC

/
July 26, 2022

Self-Learning AI for Zero-Day and N-Day Attack Defense

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
26
Jul 2022
Explore the differences between zero-day and n-day attacks on different customer servers to learn how Darktrace detects and prevents cyber threats effectively.

Key Terms:

Zero-day | A recently discovered security vulnerability in computer software that has no currently available fix or patch. Its name come from the reality that vendors have “zero days” to act and respond.

N-day | A vulnerability that emerges in computer software in which a vendor is aware and may have already issued (or are currently working on) a patch or fix. Active exploits often already exist and await abuse by nefarious actors.

Traditional security solutions often apply signature-based-detection when identifying cyber threats, helping to defend against legacy attacks but consequently missing novel ones. Therefore, security teams often lend a lot of focus to ensuring that the risk of zero-day vulnerabilities is reduced [1]. As explored in this blog, however, organizations can face just as much of a risk from n-day attacks, since they invite the most attention from malicious actors [2]. This is due in part to the reduced complexity, cost and time invested in researching and finding new exploits compared with that found when attackers exploit zero-days. 

This blog will examine both a zero-day and n-day attack that two different Darktrace customers faced in the fall of 2021. This will include the activity Darktrace detected, along with the steps taken by Darktrace/Network to intervene. It will then compare the incidents, discuss the possible dangers of third-party integrations, and assess the deprecation of legacy security tools.

Revisiting zero-day attacks 

Zero-days are among the greatest concerns security teams face in the era of modern technology and networking. Defending critical systems from zero-day compromises is a task most legacy security solutions are often unable to handle. Due to the complexity of uncovering new security flaws and developing elaborate code that can exploit them, these attacks are often carried out by funded or experienced groups such as nation-state actors and APTs. One of history’s most prolific zero-days, ‘Stuxnet’, sent security teams worldwide into a global panic in 2010. This involved a widespread attack on Iranian nuclear infrastructure and was widely accepted to be a result of nation-state actors [3]. The Stuxnet worm took advantage of four zero-day exploits, compromising over 200,000 devices and physically damaging around 10% of the 9,000 critical centrifuges at the Natanz nuclear site. 

More recently, 2021 saw the emergence of several critical zero-day vulnerabilities within SonicWall’s product suite [4]. SonicWall is a security hardware manufacturer that provides hardware firewall devices, unified threat management, VPN gateways and network security solutions. Some of these vulnerabilities lie within their Secure Mobile Access (SMA) 100 series (for example, CVE-2019-7481, CVE-2021-20016 and CVE-2021-20038 to name a few). These directly affected VPN devices and often allowed attackers easy remote access to company devices. CVE-2021-20016 in particular incorporates an SQL-Injection vulnerability within SonicWall’s SSL VPN SMA 100 product line [5]. If exploited, this defect would allow an unauthenticated remote attacker to perform their own malicious SQL query in order to access usernames, passwords and other session related information. 

The N-day underdog

The shadow cast by zero-day attacks often shrouds that of n-day attacks. N-days, however, often pose an equal - if not greater - risk to the majority of organizations, particularly those in industrial sectors. Since these vulnerabilities have fixes available, all of the hard work around research is already done; malicious actors only need to view proof of concepts (POCs) or, if proficient in coding, reverse-engineer software to reveal code-changes (binary diffing) in order to exploit these security flaws in the wild. These vulnerabilities are typically attributed to opportunistic hackers and script-kiddies, where little research or heavy lifting is required.  

August 2021 gave rise to a critical vulnerability in Atlassian Confluence servers, namely CVE-2021-26084 [6]. Confluence is a widely used collaboration wiki tool and knowledge-sharing platform. As introduced and discussed a few months ago in a previous Darktrace blog (Explore Internet-Facing System Vulnerabilities), this vulnerability allows attackers to remotely execute code on internet-facing servers after exploiting injection vulnerabilities in Object-Graph Navigation Language (OGNL). Whilst Confluence had patches and fixes available to users, attackers still jumped on this opportunity and began scanning the internet for signs of critical devices serving this outdated software [7]. Once identified, they would  exploit the vulnerability, often installing crypto mining software onto the device. More recently, Darktrace explored a new vulnerability (CVE-2022-26134), disclosed midway through 2022, that affected Confluence servers and data centers using similar techniques to that found in CVE-2021-26084 [8]. 

SonicWall in the wild – 1. Zero-day attack

At the beginning of August 2021, Darktrace prevented an attack from taking place within a European automotive customer’s environment (Figure 1). The attack targeted a vulnerable internet-facing SonicWall VPN server, and while the attacker’s motive remains unclear, similar historic events suggest that they intended to perform ransomware encryption or data exfiltration. 

Figure 1: Timeline of the SonicWall attack 

Darktrace was unable to confirm the definite tactics, techniques and procedures (TTPs) used by the attacker to compromise the customer’s environment, as the device was compromised before Darktrace installation and coverage. However, from looking at recently disclosed SonicWall VPN vulnerabilities and patterns of behaviour, it is likely CVE-2021-20016 played a part. At some point after this initial infection, it is also believed the device was able to move laterally to a domain controller (DC) using administrative credentials; it was this server that then initiated the anomalous activity that Darktrace detected and alerted on. 

On August 5th 2021 , Darktrace observed this compromised domain controller engaging in unusual ICMP scanning - a protocol used to discover active devices within an environment and create a map of an organization’s network topology. Shortly after, the infected server began scanning devices for open RDP ports and enumerating SMB shares using unorthodox methods. SMB delete and HTTP requests (over port 445 and 80 respectively) were made for files named delete.me in the root directory of numerous network shares using the user agent Microsoft WebDAV. However, no such files appeared to exist within the environment. This may have been the result of an attacker probing devices in the network in an effort to see their responses and gather information on properties and vulnerabilities they could later exploit. 

Soon the infected DC began establishing RDP tunnels back to the VPN server and making requests to an internal DNS server for multiple endpoints relating to exploit kits, likely in an effort to strengthen the attacker’s foothold within the environment. Some of the endpoints requested relate to:

-       EternalBlue vulnerability 

-       Petit Potam NTLM hash attack tool

-       Unusual GitHub repositories

-       Unusual Python repositories  

The DC made outgoing NTLM requests to other internal devices, implying the successful installation of Petit Potam exploitation tools. The server then began performing NTLM reconnaissance, making over 1,000 successful logins under ‘Administrator’ to several other internal devices. Around the same time, the device was also seen making anonymous SMBv1 logins to numerous internal devices, (possibly symptomatic of the attacker probing machines for EternalBlue vulnerabilities). 

Interestingly, the device also made numerous failed authentication attempts using a spoofed credential for one of the organization’s security managers. This was likely in an attempt to hide themselves using ‘Living off the Land’ (LotL) techniques. However, whilst the attacker clearly did their research on the company, they failed to acknowledge the typical naming convention used for credentials within the environment. This ultimately backfired and made the compromise more obvious and unusual. 

In the morning of the following day, the initially compromised VPN server began conducting further reconnaissance, engaging in similar activity to that observed by the domain controller. Until now, the customer had set Darktrace RESPOND to run in human confirmation mode, meaning interventions were not made autonomously but required confirmation by a member of the internal security team. However, thanks to Proactive Threat Notifications (PTNs) delivered by Darktrace’s dedicated SOC team, the customer was made immediately aware of this unusual behaviour, allowing them to apply manual Darktrace RESPOND blocks to all outgoing connections (Figure 2). This gave the security team enough time to respond and remediate before serious damage could be done.

Figure 2: Darktrace RESPOND model breach showing the manually applied “Quarantine Device” action taken against the compromised VPN server. This screenshot displays the UI from Darktrace version 5.1

Confluence in the wild – 2. N-day attack

Towards the end of 2021, Darktrace saw a European broadcasting customer leave an Atlassian Confluence internet-facing server unpatched and vulnerable to crypto-mining malware using CVE-2021-26084. Thanks to Darktrace, this attack was entirely immobilized within only a few hours of the initial infection, protecting the organization from damage (Figure 3). 

Figure 3: Timeline of the Confluence attack

On midday on September 1st 2021, an unpatched Confluence server was seen receiving SSL connections over port 443 from a suspicious new endpoint, 178.238.226[.]127.  The connections were encrypted, meaning Darktrace was unable to view the contents and ascertain what requests were being made. However, with the disclosure of CVE-2021-26084 just 7 days prior to this activity, it is likely that the TTPs used involved injecting OGNL expressions to Confluence server memory; allowing the attacker to remotely execute code on the vulnerable server.

Immediately after successful exploitation of the Confluence server, the infected device was observed making outgoing HTTP GET requests to several external endpoints using a new user agent (curl/7.61.1). Curl was used to silently download and configure multiple suspicious files relating to XMRig cryptocurrency miner, including ld.sh, XMRig and config.json. Subsequent outgoing connections were then made to europe.randomx-hub.miningpoolhub[.]com · 172.105.210[.]117 using the JSON-RPC protocol, seen alongside the mining credential maillocal.confluence (Figure 4). Only 3 seconds after initial compromise, the infected device began attempting to mine cryptocurrency using the Minergate protocol but was instantly and autonomously blocked by Darktrace RESPOND. This prevented the server from abusing system resources and generating profits for the attacker.

Figure 4: A graph showing the frequency of external connections using the JSON-RPC protocol made by the breach device over a 48-hour window. The orange-red dots represent models that breached as a result of this activity, demonstrating the “waterfall” effect commonly seen when a device suffers a compromise. This screenshot displays the UI from Darktrace version 5.1

In the afternoon, the malware persisted with its infection. The compromised server began making successive HTTP GET requests to a new rare endpoint 195.19.192[.]28 using the same curl user agent (Figures 5 & 6). These requests were for executable and dynamic library files associated with Kinsing malware (but fortunately were also blocked by Darktrace RESPOND). Kinsing is a malware strain found in numerous attack campaigns which is often associated with crypto-jacking, and has appeared in previous Darktrace blogs [9].

Figure 5: Cyber AI Analyst summarising the unusual download of Kinsing software using the new curl user agent. This screenshot displays the UI from Darktrace version 5.1

The attacker then began making HTTP POST requests to an IP 185.154.53[.]140, using the same curl user agent; likely a method for the attacker to maintain persistence within the network and establish a foothold using its C2 infrastructure. The Confluence server was then again seen attempting to mine cryptocurrency using the Minergate protocol. It made outgoing JSON-RPC connections to a different new endpoint, 45.129.2[.]107, using the following mining credential: ‘42J8CF9sQoP9pMbvtcLgTxdA2KN4ZMUVWJk6HJDWzixDLmU2Ar47PUNS5XHv4Kmfdh8aA9fbZmKHwfmFo8Wup8YtS5Kdqh2’. This was once again blocked by Darktrace RESPOND (Figure 7). 

Figure 6: VirusTotal showing the unusualness of one of these external IPs [10]
Figure 7: Log data showing the action taken by Darktrace RESPOND in response to the device breaching the “Crypto Currency Mining Activity” model. This screenshot displays the UI from Darktrace version 5.1

The final activity seen from this device involved the download of additional shell scripts over HTTP associated with Kinsing, namely spre.sh and unk.sh, from 194.38.20[.]199 and 195.3.146[.]118 respectively (Figure 8). A new user agent (Wget/1.19.5 (linux-gnu)) was used when connecting to the latter endpoint, which also began concurrently initiating repeated connections indicative of C2 beaconing. These scripts help to spread the Kinsing malware laterally within the environment and may have been the attacker's last ditch efforts at furthering their compromise before Darktrace RESPOND blocked all connections from the infected Confluence server [11]. With Darktrace RESPOND's successful actions, the customer’s security team were then able to perform their own response and remediation. 

Figure 8: Cyber AI Analyst revealing the last ditch efforts made by the threat actor to download further malicious software. This screenshot displays the UI from Darktrace version 5.1

Darktrace Coverage: N- vs Zero-days

In the SonicWall case the attacker was unable to achieve their actions on objectives (thanks to Darktrace's intervention). However, this incident displayed tactics of a more stealthy and sophisticated attacker - they had an exploited machine but waited for the right moment to execute their malicious code and initiate a full compromise. Due to the lack of visibility over attacker motive, it is difficult to deduce what type of actor led to this intrusion. However, with the disclosure of a zero-day vulnerability (CVE-2021-20016) not long before this attack, along with a seemingly dormant initially compromised device, it is highly possible that it was carried out by a sophisticated cyber criminal or gang. 

On the other hand, the Confluence case engaged in a slightly more noisy approach; it dropped crypto mining malware on vulnerable devices in the hope that the target’s security team did not maintain visibility over their network or would merely turn a blind eye. The files downloaded and credentials observed alongside the mining activity heavily imply the use of Kinsing malware [11]. Since this vulnerability (CVE-2021-26084) emerged as an n-day attack with likely easily accessible POCs, as well as there being a lack of LotL techniques and the motive being long term monetary gain, it is possible this attack was conducted by a less sophisticated or amateur actor (script-kiddie); one that opportunistically exploits known vulnerabilities in internet-facing devices in order to make a quick profit [12].

Whilst Darktrace RESPOND was enabled in human confirmation mode only during the start of the SonicWall attack, Darktrace’s Cyber AI Analyst still offered invaluable insight into the unusual activity associated with the infected machines during both the Confluence and SonicWall compromises. SOC analysts were able to see these uncharacteristic behaviours and escalate the incident through Darktrace’s PTN and ATE services. Analysts then worked through these tickets with the customers, providing support and guidance and, in the SonicWall case, quickly helping to configure Darktrace RESPOND. In both scenarios, Darktrace RESPOND was able to block abnormal connections and enforce a device’s pattern of life, affording the security team enough time to isolate the infected machines and prevent further threats such as ransomware detonation or data exfiltration. 

Concluding thoughts and dangers of third-party integrations 

Organizations with internet-facing devices will inevitably suffer opportunistic zero-day and n-day attacks. While little can be done to remove the risk of zero-days entirely, ensuring that organizations keep their systems up to date will at the very least help prevent opportunistic and script-kiddies from exploiting n-day vulnerabilities.  

However, it is often not always possible for organizations to keep their systems up to date, especially for those who require continuous availability. This may also pose issues for organizations that rely on, and put their trust in, third party integrations such as those explored in this blog (Confluence and SonicWall), as enforcing secure software is almost entirely out of their hands. Moreover, with the rising prevalence of remote working, it is essential now more than ever that organizations ensure their VPN devices are shielded from external threats, guidance on which has been released by the NSA/CISA [13].

These two case studies have shown that whilst organizations can configure their networks and firewalls to help identify known indicators of compromise (IoC), this ‘rearview mirror’ approach will not account for, or protect against, any new and undisclosed IoCs. With the aid of Self-Learning AI and anomaly detection, Darktrace can detect the slightest deviation from a device’s normal pattern of life and respond autonomously without the need for rules and signatures. This allows for the disruption and prevention of known and novel attacks before irreparable damage is caused- reassuring security teams that their digital estates are secure. 

Thanks to Paul Jennings for his contributions to this blog.

Appendices: SonicWall (Zero-day)

Darktrace model detections

·      AIA / Suspicious Chain of Administrative Credentials

·      Anomalous Connection / Active Remote Desktop Tunnel

·      Anomalous Connection / SMB Enumeration

·      Anomalous Connection / Unusual Internal Remote Desktop

·      Compliance / High Priority Compliance Model Breach

·      Compliance / Outgoing NTLM Request from DC

·      Device / Anomalous RDP Followed By Multiple Model Breaches

·      Device / Anomalous SMB Followed By Multiple Model Breaches

·      Device / ICMP Address Scan

·      Device / Large Number of Model Breaches

·      Device / Large Number of Model Breaches from Critical Network Device

·      Device / Multiple Lateral Movement Model Breaches (PTN/Enhanced Monitoring model)

·      Device / Network Scan

·      Device / Possible SMB/NTLM Reconnaissance

·      Device / RDP Scan

·      Device / Reverse DNS Sweep

·      Device / SMB Session Bruteforce

·      Device / Suspicious Network Scan Activity (PTN/Enhanced Monitoring model)

·      Unusual Activity / Possible RPC Recon Activity

Darktrace RESPOND (Antigena) actions (as displayed in example)

·      Antigena / Network / Manual / Quarantine Device

MITRE ATT&CK Techniques Observed
IoCs

Appendices: Confluence (N-day)

Darktrace model detections

·      Anomalous Connection / New User Agent to IP Without Hostname

·      Anomalous Connection / Posting HTTP to IP Without Hostname

·      Anomalous File / EXE from Rare External Location

·      Anomalous File / Script from Rare Location

·      Compliance / Crypto Currency Mining Activity

·      Compromise / High Priority Crypto Currency Mining (PTN/Enhanced Monitoring model)

·      Device / Initial Breach Chain Compromise (PTN/Enhanced Monitoring model)

·      Device / Internet Facing Device with High Priority Alert

·      Device / New User Agent

Darktrace RESPOND (Antigena) actions (displayed in example)

·      Antigena / Network / Compliance / Antigena Crypto Currency Mining Block

·      Antigena / Network / External Threat / Antigena File then New Outbound Block

·      Antigena / Network / External Threat / Antigena Suspicious Activity Block

·      Antigena / Network / External Threat / Antigena Suspicious File Block

·      Antigena / Network / Significant Anomaly / Antigena Block Enhanced Monitoring

MITRE ATT&CK Techniques Observed
IOCs

References:

[1] https://securitybrief.asia/story/why-preventing-zero-day-attacks-is-crucial-for-businesses

[2] https://electricenergyonline.com/energy/magazine/1150/article/Security-Sessions-More-Dangerous-Than-Zero-Days-The-N-Day-Threat.htm

[3] https://www.wired.com/2014/11/countdown-to-zero-day-stuxnet/

[4] https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=SonicWall+2021 

[5] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-20016

[6] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-26084

[7] https://www.zdnet.com/article/us-cybercom-says-mass-exploitation-of-atlassian-confluence-vulnerability-ongoing-and-expected-to-accelerate/

[8] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-26134

[9] https://attack.mitre.org/software/S0599/

[10] https://www.virustotal.com/gui/ip-address/195.19.192.28/detection 

[11] https://sysdig.com/blog/zoom-into-kinsing-kdevtmpfsi/

[12] https://github.com/alt3kx/CVE-2021-26084_PoC

[13] https://www.nsa.gov/Press-Room/Press-Releases-Statements/Press-Release-View/Article/2791320/nsa-cisa-release-guidance-on-selecting-and-hardening-remote-access-vpns/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Lewis Morgan
Cyber Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

November 28, 2024

/

Cloud

Cloud security: addressing common CISO challenges with advanced solutions

Default blog imageDefault blog image

Cloud adoption is a cornerstone of modern business with its unmatched potential for scalability, cost efficiency, flexibility, and net-zero targets around sustainability. However, as organizations migrate more workloads, applications, and sensitive data to the cloud it introduces more complex challenges for CISO’s. Let’s dive into the most pressing issues keeping them up at night—and how Darktrace / CLOUD provides a solution for each.

1. Misconfigurations: The Silent Saboteur

Misconfigurations remain the leading cause of cloud-based data breaches. In 2023 alone over 80%  of data breaches involved data stored in the cloud.1  Think open storage buckets or overly permissive permissions; seemingly minor errors that are easily missed and can snowball into major disasters. The fallout of breaches can be costly—both financially and reputationally.

How Darktrace / CLOUD Helps:

Darktrace / CLOUD continuously monitors your cloud asset configurations, learning your environment and using these insights to flag potential misconfigurations. New scans are triggered when changes take place, then grouped and prioritised intelligently, giving you an evolving and prioritised view of vulnerabilities, best practice and mitigation strategies.

2. Hybrid Environments: The Migration Maze

Many organizations are migrating to the cloud, but hybrid setups (where workloads span both on-premises and cloud environments) create unique challenges and visibility gaps which significantly increase complexity. More traditional and most cloud native security tooling struggles to provide adequate monitoring for these setups.

How Darktrace / CLOUD Helps:

Provides the ability to monitor runtime activity for both on-premises and cloud workloads within the same user interface. By leveraging the right AI solution across this diverse data set, we understand the behaviour of your on-premises workloads and how they interact with cloud systems, spotting unusual connectivity or data flow activity during and after the migration process.

This unified visibility enables proactive detection of anomalies, ensures seamless monitoring across hybrid environments, and provides actionable insights to mitigate risks during and after the migration process.

3. Securing Productivity Suites: The Last Mile

Cloud productivity suites like Microsoft 365 (M365) are essential for modern businesses and are often the first step for an organization on a journey to Infrastructure as a Service (IaaS) or Platform as a Service (PaaS) use cases. They also represent a prime target for attackers. Consider a scenario where an attacker gains access to an M365 account, and proceeds to; access sensitive emails, downloading files from SharePoint, and impersonating the user to send phishing emails to internal employees and external partners. Without a system to detect these behaviours, the attack may go unnoticed until significant damage is done.

How Darktrace helps:

Darktrace’s Active AI platform integrates with M365 and establishes an understanding of normal business activity, enabling the detection of abnormalities across its suite including Email, SharePoint and Teams. By identifying subtle deviations in behaviour, such as:

   •    Unusual file accesses

   •    Anomalous login attempts from unexpected locations or devices.

   •    Suspicious email forwarding rules created by compromised accounts.

Darktrace’s Autonomous Response can act precisely to block malicious actions, by disabling compromised accounts and containing threats before they escalate. Precise actions also ensure that critical business operations are maintained even when a response is triggered.  

4. Agent Fatigue: The Visibility Struggle

To secure cloud environments, visibility is critical. If you don’t know what’s there, how can you secure it? Many solutions require agents to be deployed on every server, workload, and endpoint. But managing and deploying agents across sprawling hybrid environments can be both complex and time-consuming when following change controls, and especially as cloud resources scale dynamically.

How Darktrace / CLOUD Helps:

Darktrace reduces or eliminates the need for widespread agent deployment. Its agentless by default, integrating directly with cloud environments and providing instant visibility without the operational headache. Darktrace ensures coverage with minimal friction. By intelligently graphing the relationships between assets and logically grouping your deployed Cloud resources, you are equipped with real-time visibility to quickly understand and protect your environment.

So why Darktrace / CLOUD?

Darktrace’s Self-Learning AI redefines cloud security by adapting to your unique environment, detecting threats as they emerge, and responding in real-time. From spotting misconfigurations to protecting productivity suites and securing hybrid environments. Darktrace / CLOUD simplifies cloud security challenges without adding operational burdens.

From Chaos to Clarity

Cloud security doesn’t have to be a game of endless whack-a-mole. With Darktrace / CLOUD, CISOs can achieve the visibility, control, and proactive protection they need to navigate today’s complex cloud ecosystems confidently.

[1] https://hbr.org/2024/02/why-data-breaches-spiked-in-2023

Continue reading
About the author
Adam Stevens
Director of Product, Cloud Security

Blog

/

November 28, 2024

/

Thought Leadership

Preparing for 2025: Darktrace's top 10 AI and cybersecurity predictions

Default blog imageDefault blog image

Each year, Darktrace's AI and cybersecurity experts reflect on the events of the past 12 months and predict the trends we expect to shape the cybersecurity landscape in the year ahead. In 2024, we predicted that the global elections, fast-moving AI innovations, and increasingly cloud-based IT environments would be key factors shaping the cyber threat landscape.

Looking ahead to 2025, we expect the total addressable market of cybercrime to expand as attackers add more tactics to their toolkits. Threat actors will continue to take advantage of the volatile geopolitical environment and cybersecurity challenges will increasingly move to new frontiers like space. When it comes to AI, we anticipate the innovation in AI agents in 2024 to pave the way for the rise of multi-agent systems in 2025, creating new challenges and opportunities for cybersecurity professionals and attackers alike.

Here are ten trends to watch for in 2025:

The overall Total Addressable Market (TAM) of cybercrime gets bigger

Cybercrime is a global business, and an increasingly lucrative one, scaling through the adoption of AI and cybercrime-as-a-service. Annual revenue from cybercrime is already estimated to be over $8 trillion, which we’ve found is almost 5x greater than the revenue of the Magnificent Seven stocks. There are a few key factors driving this growth.

The ongoing growth of devices and systems means that existing malware families will continue to be successful. As of October 2024, it’s estimated that more than 5.52 billion people (~67%) have access to the internet and sources estimate 18.8 billion connected devices will be online by the end of 2024. The increasing adoption of AI is poised to drive even more interconnected systems as well as new data centers and infrastructure globally.

At the same time, more sophisticated capabilities are available for low-level attackers – we’ve already seen the trickle-down economic benefits of living off the land, edge infrastructure exploitation, and identity-focused exploitation. The availability of Ransomware-as-a-Service (RaaS) and Malware-as-a-Service (MaaS) make more advanced tactics the norm. The subscription income that these groups can generate enables more adversarial innovation, so attacks are getting faster and more effective with even bigger financial ramifications.

While there has also been an increasing trend in the last year of improved cross-border law enforcement, the efficacy of these efforts remains to be seen as cybercriminal gangs are also getting more resilient and professionalized. They are building better back-up systems and infrastructure as well as more multi-national networks and supply chains.

Security teams need to prepare for the rise of AI agents and multi-agent systems

Throughout 2024, we’ve seen major announcements about advancements in AI agents from the likes of OpenAI, Microsoft, Salesforce, and more. In 2025, we’ll see increasing innovation in and adoption of AI agents as well as the emergence of multi-agent systems (or “agent swarms”), where groups of autonomous agents work together to tackle complex tasks.

The rise of AI agents and multi-agent systems will introduce new challenges in cybersecurity, including new attack vectors and vulnerabilities. Security teams need to think about how to protect these systems to prevent data poisoning, prompt injection, or social engineering attacks.

One benefit of multi-agent systems is that agents can autonomously communicate, collaborate, and interact. However without clear and distinct boundaries and explicit permissions, this can also pose a major data privacy risk and avenue for manipulation. These issues cannot be addressed by traditional application testing alone. We must ensure these systems are secure by design, where robust protective mechanisms and data guardrails are built into the foundations.

Threat actors will be the earliest adopters of AI agents and multi-agent systems

We’ve already seen how quickly threat actors have been able to adopt generative AI for tasks like email phishing and reconnaissance. The next frontier for threat actors will be AI agents and multi-agent systems that are specialized in autonomous tasks like surveillance, initial access brokering, privilege escalation, vulnerability exploitation, data summarization for smart exfiltration, and more. Because they have no concern for safe, secure, accurate, and responsible use, adversaries will adopt these systems faster than cyber defenders.

We could also start to see use cases emerge for multi-agent systems in cyber defense – with potential for early use cases in incident response, application testing, and vulnerability discovery. On the whole, security teams will be slower to adopt these systems than adversaries because of the need to put in place proper security guardrails and build trust over time.

There is heightened supply chain risk for Large Language Models (LLMs)

Training LLMs requires a lot of data, and many experts have warned that world is running out of quality data for that training. As a result, there will be an increasing reliance on synthetic data, which can introduce new issues of accuracy and efficacy. Moreover, data supply chain risks will be an Achilles heel for organizations, with the potential interjection of vulnerabilities through the data and machine learning providers that they rely on. Poisoning one data set could have huge trickle-down impacts across many different systems. Data security will be paramount in 2025.

The race to identify software vulnerabilities intensifies

The time it takes for threat actors to exploit newly published CVEs is getting shorter, giving defenders an even smaller window to apply patches and remediations. A 2024 report from Cloudflare found that threat actors quickly weaponized proof of concept exploits in attacks as quickly as 22 minutes after the exploits were made public.

At the same time, 2024 also saw the first reports from researchers across academia and the tech industry using AI for vulnerability discovery in real-world code. With threat actors getting faster at exploiting vulnerabilities, defenders will need to use AI to identify vulnerabilities in their software stack and to help identify and prioritize remediations and patches.

Insider threat risks will force organizations to evolve zero trust strategies

In 2025, an increasingly volatile geopolitical situation and the intensity of the AI race will make insider threats an even bigger risk for businesses, forcing organizations to expand zero-trust strategies. The traditional zero-trust model provides protection from external threats to an organization’s network by requiring continuous verification of the devices and users attempting to access critical business systems, services, and information from multiple sources. However, as we have seen in the more recent Jack Teixeira case, malicious insiders can still do significant damage to an organization within their approved and authenticated boundary.

To circumvent the remaining security gaps in a zero-trust architecture and mitigate increasing risk of insider threats, organizations will need to integrate a behavioral understanding dimension to their zero-trust approaches. The zero-trust best practice of “never trust, always verify” needs to evolve to become “never trust, always verify, and continuously monitor.”

Identity remains an expensive problem for businesses

2024 saw some of the biggest and costliest attacks – all because the attacker had access to compromised credentials. Essentially, they had the key to the front door. Businesses still struggle with identity and access management (IAM), and it’s getting more complex now that we’re in the middle of a massive Software-as-a-Service (SaaS) migration driven by increasing rates of AI and cloud use across businesses.

This challenge is going to be exacerbated in 2025 by a few global and business factors. First, there is an increasing push for digital identities, such as the rollout of the EU Digital Identity Framework that is underway, which could introduce additional attack vectors. As they scale, businesses are turning more and more to centralized identity and access solutions with decentralized infrastructure and relying on SaaS and application-native security.

Increasing vulnerabilities at the edge

During the COVID-19 pandemic, many organizations had to stand-up remote access solutions quickly – in a matter of days or weeks – without the high level of due diligence that they require to be fully secured. In 2025, we expect to see continued fall-out as these quickly spun-up solutions start to present genuine vulnerability to businesses. We’ve already seen this start to play out in 2024 with the mass-exploitation of internet-edge devices like firewalls and VPN gateway products.

By July 2024, Darktrace’s threat research team observed that the most widely exploited edge infrastructure devices were those related to Ivanti Connect Secure, JetBrains TeamCity, FortiClient Enterprise Management Server, and Palo Alto Networks PAN-OS. Across the industry, we’ve already seen many zero days and vulnerabilities exploiting these internet-connected devices, which provide inroads into the network and store/cache credentials and passwords of other users that are highly valuable for threat actors.

Hacking Operational Technology (OT) gets easier

Hacking OT is notoriously complex – causing damage requires an intimate knowledge of the specific systems being targeted and historically was the reserve of nation states. But as OT has become more reliant and integrated with IT systems, attackers have stumbled on ways to cause disruption without having to rely on the sophisticated attack-craft normally associated with nation-state groups. That’s why some of the most disruptive attacks of the last year have come from hacktivist and financially-motivated criminal gangs – such as the hijacking of internet-exposed Programmable Logic Controllers (PLCs) by anti-Israel hacking groups and ransomware attacks resulting in the cancellation of hospital operations.  

In 2025, we expect to see an increase in cyber-physical disruption caused by threat groups motivated by political ideology or financial gain, bringing the OT threat landscape closer in complexity and scale to that of the IT landscape. The sectors most at risk are those with a strong reliance on IoT sensors, including healthcare, transportation, and manufacturing sectors.

Securing space infrastructure and systems becomes a critical imperative

The global space industry is growing at an incredibly fast pace, and 2025 is on track to be another record-breaking year for spaceflight with major missions and test flights planned by NASA, ESA, CNSA as well as the expected launch of the first commercial space station from Vast and programs from Blue Origin, Amazon and more. Research from Analysis Mason suggests that 38,000 additional satellites will be built and launched by 2033 and the global space industry revenue will reach $1.7 trillion by 2032. Space has also been identified as a focus area for the incoming US administration.

In 2025, we expect to see new levels of tension emerge as private and public infrastructure increasingly intersect in space, shining a light on the lack of agreed upon cyber norms and the increasing challenge of protecting complex and remote space systems against modern cyber threats.  Historically focused on securing earth-bound networks and environments, the space industry will face challenges as post-orbit threats rise, with satellites moving up the target list.

The EU’s NIS2 Directive now recognizes the space sector as an essential entity that is subject to its most strict cybersecurity requirements. Will other jurisdictions follow suit? We expect global debates about cyber vulnerabilities in space to come to the forefront as we become more reliant on space-based technology.

Preparing for the future

Whatever 2025 brings, Darktrace is committed to providing robust cybersecurity leadership and solutions to enterprises around the world. Our team of subject matter experts will continue to monitor emerging threat trends, advising both our customers and our product development teams.

And for day-to-day security, our multi-layered AI cybersecurity platform can protect against all types of threats, whether they are known, unknown, entirely novel, or powered by AI. It accomplishes this by learning what is normal for your unique organization, therefore identifying unusual and suspicious behavior at machine speed, regardless of existing rules and signatures. In this way, organizations with Darktrace can be ready for any developments in the cybersecurity threat landscape that the new year may bring.

Discover more about Darktrace's predictions on the AI and cybersecurity landscape for 2025 by joining the upcoming webinar on December 12, 2024 at 10:00am EST/3:00pm GMT. Register here.

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI