Blog
/

OT

Ransomware

/
March 25, 2021

SANS ICS Security Summit 2021 recap: Industry on the move

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
25
Mar 2021
This blog provides a concise overview of the key points from SANS Summit 2021. Knowing ‘self’ both defends against the growing tide of external threats and allows organizations to gain visibility into new vulnerable areas as ICS evolves.

Shining a light into the murky world of industrial cyber security — where major incidents can be kept hush, and information is often not made publicly available — the SANS Institute held its 16th annual ICS Security Summit in March. With virtual events across APAC, EMEA, and the US, the round-the-clock summit stressed the importance of having good visibility and a strong understanding of industrial networks for anomaly detection and incident response. Speakers at the event also emphasized how automation can be used in industrial security to address budget restraints and skill shortages.

The summit also detailed the direction of developments in both industrial technologies and the surrounding threat landscape, including the adoption of cloud technologies for Industrial Control Systems, the broadening scope of threat actors, and the inherent limitations of patching and vulnerability management.

In addition to framing the key points of the summit, this blog will hone in on the program’s most salient points: namely, how building an in-depth understanding of ‘self’ for an ICS ecosystem can help fend off the rising tide of threat actors, and at the same time allow organizations to embrace new technologies in the face of their associated risks. Ultimately, by ‘knowing thyself,’ organizations will be able to simultaneously fight external threats, and also gain visibility into new areas of vulnerability that arise inside an organization as it evolves its industrial environment.

SANS Summit 2021: An overview

The following provides a high-level overview of the major topics discussed throughout the SANS summit:

Attacker TTPs

Threat Trend: MITRE ATT&CK for ICS provides details of known attack tradecraft.

Industry Challenge: There has been a historic lack of sharing lessons learned within the community.

Recommendation: Understand attack TTPs and align your defences with those techniques.

Industry Trend: MITRE ATT&CK for ICS offers a big step forward for the community to learn from previous attacks.

Visibility

Threat Trend: The SolarWinds attack has emphasized the vulnerability of ICS e.g. exploiting SNMP communications in BMS.

Industry Challenge: The absence of logging and event management has hindered SolarWinds investigations in CNI.

Recommendation: Use active network monitoring for log generation, and increase network and host visibility.

Industry Trend: The SolarWinds attack has emphasized the importance of CNI cyber security to the Biden administration.

Test your defenses

Threat Trend: Common TTPs — misuse of valid accounts, abuse of remote services, phishing/spear phishing.

Industry Challenge: Vulnerability tracking is not adequate to defend ICS networks — vulnerability reporting is far from comprehensive, and attackers are exploiting legitimate tools to gain access.

Recommendation: Test your defenses and your defenders using lab environments, external pentests, and adversary simulations.

Industry Trend: Pentesting of ICS environments is being performed remotely as a result of lockdown restrictions.

Know thyself

Threat Trend: The barrier to hacking ICS is lowering — threat actors are expanding, from nation states to cyber-criminals e.g. EKANS.

Industry Challenge: OT security teams suffer from a skills shortage and tight budgets.

Recommendation: Make use of the defender’s home turf advantages — defense-in-depth, learn ‘normal’ network behavior, gain visibility over internal comms.

Industry Trend: Digital solutions, such as cloud and virtualization, are being used to solve many ICS challenges.

New solutions bring new risks

Threat Trend: Third-party risks, such as OEMs and remote access points, are being exploited to gain direct access into ICS environments.

Industry Challenge: New digital solutions bring new challenges — supply chain risk, IT/OT convergence, compliance obligations, vendor lock-in.

Recommendation: If you can’t see the network, you can’t defend the network — improve visibility, identify crown jewels, boost incident response capability, and validate network segmentation.

Industry Trend: Renewable Energy industry is a big adopter of innovative ICS solutions, such as cloud, remote management, and ICSaaS. The decision to migrate to these solutions increasingly seems to be when, not if.

‘Know thyself’: Learning ‘self’ to identify emerging threats

A wide variety of threat actors are making their debut in the global ICS threat landscape. First, new state-sponsored advanced persistant threat groups (APTs) are targeting industrial ecosystems every year. 2020 also saw the addition of organized crime groups targeting ICS with new ransomware strains such as EKANS.

Accordingly, cyber-attacks on industrial systems are no longer the sole domain of nation states. With ransomware-as-a-service becoming increasingly available on the Dark Web, the barrier of entry for attacking critical infrastructure and manufacturing is demonstrably lowering. In light of this, experts at the SANS conference recommend gaining a detailed understanding of your network and making use of the defender’s home advantage with defence-in-depth.

With attacks growing in scale and sophistication, there is a growing recognition that defenses that sit at the border of organizations and attempt to keep threats out are no longer enough. Organizations must move to a model that assumes a breach, and adopt technologies that can identify cyber-threats once they are inside. This can only be achieved with a real-time, granular understanding of ‘normal’ behavior for every device and controller.

By learning, from scratch, the normal ‘pattern of life’ for all devices, users, and peer groups across industrial networks, Darktrace’s Industrial Immune System builds a sense of self for everything seen in an ICS ecosystem, as well as the digital environment as a whole. In this way, Darktrace allows organizations to ‘know thyself’ to a unparalleled degree, building a dynamic understanding of normal rather than relying on static baselines.

New solutions bring new risks

Throughout the summit, speakers discussed how they have used digital solutions such as cloud and virtualization to solve problems and cut costs. In particular, the renewable energy sector is a big adopter of cloud solutions, or “ICS as a Service” (ICSaaS). A wind farm in California, for example, might be remotely controlled by engineers on the east coast, or a vendor might maintain and run equipment for a hydroelectric plant in Latin America from their European headquarters.

As customers move to adopt these kinds of digital solutions — and with these decisions typically being made at board-level, rather than by the engineers — it seems more a question of when, not if, we see wider adoption of these technologies in the ICS community.

As OT converges with IT in the cloud, so do their associated risks. These new risks create headwinds to change, but some sectors are still adopting these new solutions and making big savings. Unified visibility across IT, OT, and the cloud have thus become a necessity for organizations seeking to accelerate digital transformation while also managing the risks of digitization and of their increasingly dynamic workforces.

A changing landscape

In the face of a new era of cyber-threats, the focus for OT specialists should not be on reactive measures, but embracing new self-learning technologies that develop an evolving understanding of ‘normal’ across industrial systems, the corporate network, cloud environments, and beyond.

By adapting to changes in the digital infrastructure, AI-powered defenses can detect and respond to zero-day threats, while alleviating the burden of security teams by automating much of the manual processes required in post-incident investigation. And by unifying insights across a range of different technologies, organizations can benefit from an enterprise-wide approach to security rather than relying on siloed defenses that lack the context for accurate decision-making.

In this age of advanced cyber-criminal rings and state-sponsored attacks, critical infrastructure and other industrial environments are now the focal point for cyber espionage and intrusions seeking to disrupt operations. The SANS ICS Security Summit reminds us of the need for defenders to face this new landscape with new and adaptive technologies that can disrupt the early signs of a threat, whether known or unknown.

Thanks to Darktrace analyst Oakley Cox for his insights.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
David Masson
VP, Enterprise Security

David Masson is Darktrace’s Director of Enterprise Security, and has over two decades of experience working in fast moving security and intelligence environments in the UK, Canada and worldwide. With skills developed in the civilian, military and diplomatic worlds, he has been influential in the efficient and effective resolution of various unique national security issues. David is an operational solutions expert and has a solid reputation across the UK and Canada for delivery tailored to customer needs. At Darktrace, David advises strategic customers across North America and is also a regular contributor to major international and national media outlets in Canada where he is based. He holds a master’s degree from Edinburgh University.

Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

November 19, 2024

/
No items found.

Darktrace Leading the Future of Network Detection and Response with Recognition from KuppingerCole

Default blog imageDefault blog image

KuppingerCole has recognized Darktrace as an overall Leader, Product Leader, Market Leader and Innovation Leader in the KuppingerCole Leadership Compass: Network Detection and Response (2024).

With the perimeter all but dissolved, Network Detection and Response (NDR) tools are quickly becoming a critical component of the security stack, as the main tool to span the modern network. NDRs connect on-premises infrastructure to cloud, remote workers, identities, SaaS applications, and IoT/OT – something not available to EDR that requires agents and isolates visibility to individual devices.

KuppingerCole Analysts AG designated Darktrace an ‘Overall Leader’ position because of our continual innovation around user-led security. Self-Learning AI together with automated triage through Cyber AI Analyst and real-time autonomous response actions have been instrumental to security teams in stopping potential threats before they become a breach. With this time saved, Darktrace is leading beyond reactive security to truly harden a network, allowing the team to spend more time in preventive security measures.

Network Detection and Response protects where others fail to reach

NDR solutions operate at the network level, deploying inside or parallel to your network to ingest raw traffic via virtual or physical sensors. This gives them unprecedented potential to identify anomalies and possible breaches in any network - far beyond simple on-prem, into dynamic virtual environments, cloud or hybrid networks, cloud applications, and even remote devices accessing the corporate network via ZTNA or VPN.

Rather than looking at processes level data, NDR can detect the lateral movement of an adversary across multiple assets by analyzing network traffic patterns which endpoint solutions may not be able to identify [1]. In the face of a growing, complex environment, organizations large and small, will benefit from using NDRs either in conjunction, or as the foundation for, their Extended Detection and Response (XDR) for a unified view that improves their overall threat detection, ease of investigation and faster response times.

Today's NDR solutions are expected to include advanced ML and artificial intelligence (AI) algorithms [1]

Traditional IDS & IPS systems are labor intensive, requiring continuous rule creation, outdated signature maintenance, and manual monitoring for false positives or incorrect actions. This is no longer viable against a higher volume and changing landscape, making NDR the natural network tool to level against these evolutions. The role of AI in NDRs is designed to meet this challenge, “to reduce both the labor need for analysis and false positives, as well as add value by improving anomaly detection and overall security posture” .

Celebrating success in leadership and innovation

Darktrace is proud to have been recognized as an NDR “Overall Leader” in KuppingerCole Analyst AG’s Leadership Compass. The report gave further recognition to Darktrace as a ‘Product Leader”, “Innovation Leader” and “Market Leader”.

Maximum scores were received for core product categories, in addition to market presence and financial strength. Particular attention was directed to our innovation. This year has seen several NDR updates via Darktrace’s ActiveAI Security Platform version 6.2 which has enhanced investigation workflows and provided new AI transparency within the toolset.

Positive scores were also received for Darktrace’s deployment ecosystem and surrounding support, minimizing the need for extraneous integrations through a unique platform architecture that connects with over 90 other vendors.

High Scores received in Darktrace’s KuppingerCole Spider Chart across Core NDR capability areas
Figure 1: High Scores received in Darktrace’s KuppingerCole Spider Chart across Core NDR capability areas

Darktrace’s pioneering AI approach sets it apart

Darktrace / NETWORK’s approach is fundamentally different to other NDRs. Continual anomaly-based detection (our Self-Learning AI), understands what is normal across each of your network entities, and then examines deviations from these behaviors rather than needing to apply static rules or ML to adversary techniques. As a result, Darktrace / NETWORK can focus on surfacing the novel threats that cannot be anticipated, whilst our proactive solutions expose gaps that can be exploited and reduce the risk of known threats.    

Across the millions of possible network events that may occur, Darktrace’s Cyber AI Analyst reduces that manual workload for SOC teams by presenting only what is most important in complete collated incidents. This accelerates SOC Level 2 analyses of incidents by 10x2, giving time back, first for any necessary response and then for preventive workflows.

Finally, when incidents begin to escalate, Darktrace can natively (or via third-party) autonomously respond and take precise actions based on a contextual understanding of both the affected assets and incident in question so that threats can be disarmed without impacting wider operations.

Within the KuppingerCole report, several standout strengths were listed:

  • Cyber AI Analyst was celebrated as a core differentiator, enhancing both visibility and investigation into critical network issues and allowing a faster response.
  • Darktrace / NETWORK was singled for its user benefits. Both a clear interface for analysts with advanced filtering and analytical tools, and efficient role-based access control (RBAC) and configuration options for administrators.
  • At the product level, Darktrace was recognized for complete network traffic analysis (NTA) capabilities allowing extensive analysis into components like application use/type, fingerprinting, source/destination communication, in addition to comprehensive protocol support across a range of network device types from IT, OT, IoT and mobiles and detailed MITRE ATT&CK mapping.
  • Finally, at the heart of it, Darktrace’s innovation was highlighted in relation to its intrinsic Self Learning AI, utilizing multiple layers of deep learning, neural networks, LLMs, NLP, Generative AI and more to understand network activity and filter it for what’s critical on an individual customer level.

Going beyond reactive security

Darktrace’s visibility and AI-enabled detection, investigation and response enable security teams to focus on hardening gaps in their network through contextual relevance & priority. Darktrace / NETWORK explicitly gives time back to security teams allowing them to focus on the bigger strategic and governance workflows that sometimes get overlooked. This is enabled through proactive solutions intrinsically connected to our NDR:

  • Darktrace / Proactive Exposure Management, which looks beyond just CVE risks to instead discover, prioritize and validate risks by business impact and how to mobilize against them early, to reduce the number of real threats security teams face.
  • Darktrace / Incident Readiness & Recovery, a solution rather than service-based approach to incident response (IR) that lets teams respond in the best way to each incident and proactively test their familiarity and effectiveness of IR workflows with sophisticated incident simulations involving their own analysts and assets.

Together, these solutions allow Darktrace / NETWORK to go beyond the traditional NDR and shift teams to a more hardened and proactive state.

Putting customers first

Customers continue to sit at the forefront of Darktrace R&D, with their emerging needs and pain points being the direct inspiration for our continued innovation.

This year Darktrace / NETWORK has protected thousands of customers against the latest attacks, from data exfil and destruction, to unapproved privilege escalation and ransomware including strains like Medusa, Qilin and AlphV BlackCat.

In each instance, Darktrace / NETWORK was able to provide a holistic lens of the anomalies present in their traffic, collated those that were important, and either responded or gave teams the ability to take targeted actions against their threats – even when adversaries pivoted. In one example of a Gootloader compromise, Darktrace ensured a SOC went from detection to recovery within 5 days, 92.8% faster than the average containment time of 69 days.

Results like these, focused on user-led security, have secured Darktrace’s position within the latest NDR Leadership Compass.

To find out more about what makes Darktrace / NETWORK special, read the full KuppingerCole report.

References

[1] Osman Celik, KuppingerCole Leadership Compass:Network Detection and Response (2024)

[2] Darktrace's AI Analyst customer fleet data

[3] https://www.ibm.com/reports/data-breach

Continue reading
About the author
Gabriel Few-Wiegratz
Product Marketing Manager

Blog

/

November 1, 2024

/

Inside the SOC

Phishing and Persistence: Darktrace’s Role in Defending Against a Sophisticated Account Takeover

Default blog imageDefault blog image

The exploitation of SaaS platforms

As businesses continue to grow and evolve, the need for sharing ideas through productivity and cloud Software-as-a-Service (SaaS) platforms is becoming increasingly crucial. However, these platforms have also become prime targets for cyber attackers.

Threat actors often exploit these widely-used services to gain unauthorized access, steal sensitive information, and disrupt business operations. The growing reliance on SaaS platforms makes them attractive entry points for cybercriminals, who use sophisticated techniques such as phishing, social engineering, and malware to compromise these systems.

Services like Microsoft 365 are regularly targeted by threat actors looking for an entry point into an organization’s environment to carry out malicious activities. Securing these platforms is crucial to protect business data and ensure operational continuity.

Darktrace / EMAIL detection of the phishing attack

In a recent case, Darktrace observed a customer in the manufacturing sector receiving a phishing email that led to a threat actor logging in and creating an email rule. Threat actors often create email rules to move emails to their inbox, avoiding detection. Additionally, Darktrace detected a spoofed domain registered by the threat actor. Despite already having access to the customer’s SaaS account, the actor seemingly registered this domain to maintain persistence on the network, allowing them to communicate with the spoofed domain and conduct further malicious activity.

Darktrace / EMAIL can help prevent compromises like this one by blocking suspicious emails as soon as they are identified. Darktrace’s AI-driven email detection and response recognizes anomalies that might indicate phishing attempts and applies mitigative actions autonomously to prevent the escalation of an attack.

Unfortunately, in this case, Darktrace was not configured in Autonomous Response mode at the time of the attack, meaning actions had to be manually applied by the customer’s security team. Had it been fully enabled, it would have held the emails, preventing them from reaching the intended recipient and stopping the attack at its inception.

However, Darktrace’s Managed Threat Detection alerted the Security Operations Center (SOC) team to the compromise, enabling them to thoroughly investigate the incident and notify the customer before further damage could occur.

The Managed Threat Detection service continuously monitors customer networks for suspicious activities that may indicate an emerging threat. When such activities are detected, alerts are sent to Darktrace’s expert Cyber Analysts for triage, significantly speeding up the remediation process.

Attack Overview

On May 2, 2024, Darktrace detected a threat actor targeting a customer in the manufacturing sector then an unusual login to their SaaS environment was observed prior to the creation of a new email rule.

Darktrace immediately identified the login as suspicious due to the rarity of the source IP (31.222.254[.]27) and ASN, coupled with the absence of multi-factor authentication (MFA), which was typically required for this account.

The new email rule was intended to mark emails as read and moved to the ‘Conversation History’ folder for inbound emails from a specific domain. The rule was named “….,,,”, likely the attacker attempting to setup their new rule with an unnoteworthy name to ensure it would not be noticed by the account’s legitimate owner. Likewise, by moving emails from a specific domain to ‘Conversation History’, a folder that is rarely used by most users, any phishing emails sent by that domain would remain undetected by the user.

Darktrace’s detection of the unusual SaaS login and subsequent creation of the new email rule “….,,,”.
Figure 1: Darktrace’s detection of the unusual SaaS login and subsequent creation of the new email rule “….,,,”.

The domain in question was identified as being newly registered and an example of a typosquat domain. Typosquatting involves registering new domains with intentional misspelling designed to convince users to visit fake, and often malicious, websites. This technique is often used in phishing campaigns to create a sense of legitimacy and trust and deceive users into providing sensitive information. In this case, the suspicious domain closely resembled several of the customer’s internal domains, indicating an attempt to impersonate the organization’s legitimate internal sites to gain the target’s trust. Furthermore, the creation of this lookalike domain suggests that the attack was highly targeted at this specific customer.

Interestingly, the threat actor registered this spoofed domain despite already having account access. This was likely intended to ensure persistence on the network without having to launch additional phishing attacks. Such use of spoofed domain could allow an attacker to maintain a foothold in their target network and escalate their malicious activities without having to regain access to the account. This persistence can be used for various purposes, including data exfiltration, spreading malware, or launching further attacks.

Following this, Darktrace detected a highly anomalous email being sent to the customer’s account from the same location as the initial unsual SaaS login. Darktrace’s anomaly-based detection is able to identify threats that human security teams and traditional signature-based methods might miss. By analyzing the expected behavior of network users, Darktrace can recognize the subtle deviations from the norm that may indicate malicious activity. Unfortunately, in this instance, without Darktrace’s Autonomous Response capability enabled, the phishing email was able to successfully reach the recipient. While Darktrace / EMAIL did suggest that the email should be held from the recipients inbox, the customer was required to manually approve it.

Despite this, the Darktrace SOC team were still able to support the customer as they were subscribed to the Managed Threat Detection service. Following the detection of the highlight anomalous activity surrounding this compromise, namely the unusual SaaS login followed by a new email rule, an alert was sent to the Darktrace SOC for immediate triage, who then contacted the customer directly urging immediate action.

Conclusion

This case underscores the need to secure SaaS platforms like Microsoft 365 against sophisticated cyber threats. As businesses increasingly rely on these platforms, they become prime targets for attackers seeking unauthorized access and disruption.

Darktrace’s anomaly-based detection and response capabilities are crucial in identifying and mitigating such threats. In this instance, Darktrace detected a phishing email that led to a threat actor logging in and creating a suspicious email rule. The actor also registered a spoofed domain to maintain persistence on the network.

Darktrace / EMAIL, with its AI-driven detection and analysis, can block suspicious emails before they reach the intended recipient, preventing attacks at their inception. Meanwhile, Darktrace’s SOC team promptly investigated the activity and alerted the customer to the compromise, enabling them to take immediate action to remediate the issue and prevent any further damage.

Credit to Vivek Rajan (Cyber Security Analyst) and Ryan Traill (Threat Content Lead).

Appendices

Darktrace Model Detections

  • SaaS / Access / Unusual External Source for SaaS Credential Use
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active
  • SaaS / Resource / Unusual Access to Delegated Resource by Non Owner
  • SaaS / Email Nexus / Unusual Login Location Following Sender Spoof
  • Compliance / Anomalous New Email Rule
  • SaaS / Compromise / Unusual Login and New Email Rule

Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

31.222.254[.]27 – IP -  Suspicious Login Endpoint

MITRE ATT&CK Mapping

Tactic – Technqiue – Sub-technique of (if applicable)

Cloud Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078.004 - T1078

Cloud Service Dashboard – DISCOVERY - T1538

Compromise Accounts - RESOURCE DEVELOPMENT - T1586

Steal Web Session Cookie - CREDENTIAL ACCESS - T1539

Outlook Rules – PERSISTENCE - T1137.005 - T1137

Continue reading
About the author
Vivek Rajan
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI