Blog
/

Inside the SOC

/
June 25, 2024

Following up on our Conversation: Detecting & Containing a LinkedIn Phishing Attack with Darktrace

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
25
Jun 2024
Darktrace/Email detected a phishing attack that had originated from LinkedIn, where the attacker impersonated a well known construction company to conduct a credential harvesting attack on the target. Darktrace’s ActiveAI Security Platform played a critical role in investigating the activity and initiating real-time responses that were outside the physical capability of human security teams.

Note: Real organization, domain and user names have been modified and replaced with fictitious names to maintain anonymity.  

Social media cyber-attacks

Social media is a known breeding ground for cyber criminals to easily connect with a near limitless number of people and leverage the wealth of personal information shared on these platforms to defraud the general public.  Analysis suggests even the most tech savvy ‘digital natives’ are vulnerable to impersonation scams over social media, as criminals weaponize brands and trends, using the promise of greater returns to induce sensitive information sharing or fraudulent payments [1].

LinkedIn phishing

As the usage of a particular social media platform increases, cyber criminals will find ways to exploit the increasing user base, and this trend has been observed with the rise in LinkedIn scams in recent years [2].  LinkedIn is the dominant professional networking site, with a forecasted 84.1million users by 2027 [3].  This platform is data-driven, so users are encouraged to share information publicly, including personal life updates, to boost visibility and increase job prospects [4] [5].  While this helps legitimate recruiters to gain a good understanding of the user, an attacker could also leverage the same personal content to increase the sophistication and success of their social engineering attempts.  

Darktrace detection of LinkedIn phishing

Darktrace detected a Software-as-a-Service (SaaS) compromise affecting a construction company, where the attack vector originated from LinkedIn (outside the monitoring of corporate security tools), but then pivoted to corporate email where a credential harvesting payload was delivered, providing the attacker with credentials to access a corporate file storage platform.  

Because LinkedIn accounts are typically linked to an individual’s personal email and are most commonly accessed via the mobile application [6] on personal devices that are not monitored by security teams, it can represent an effective initial access point for attackers looking to establish an initial relationship with their target. Moreover, user behaviors to ignore unsolicited emails from new or unknown contacts are less frequently carried over to platforms like LinkedIn, where interactions with ‘weak ties’ as opposed to ‘strong ties’ are a better predictor of job mobility [7]. Had this attack been allowed to continue, the threat actor could have leveraged access to further information from the compromised business cloud account to compromise other high value accounts, exfiltrate sensitive data, or defraud the organization.

LinkedIn phishing attack details

Reconnaissance

The initial reconnaissance and social engineering occurred on LinkedIn and was thus outside the purview of corporate security tools, Darktrace included.

However, the email domain “hausconstruction[.]com” used by the attacker in subsequent communications appears to be a spoofed domain impersonating a legitimate construction company “haus[.]com”, suggesting the attacker may have also impersonated an employee of this construction company on LinkedIn.  In addition to spoofing the domain, the attacker seemingly went further to register “hausconstruction.com” on a commercial web hosting platform.  This is a technique used frequently not just to increase apparent legitimacy, but also to bypass traditional security tools since newly registered domains will have no prior threat intelligence, making them more likely to evade signature and rules-based detections [8].  In this instance, open-source intelligence (OSINT) sources report that the domain was created several months earlier, suggesting this may have been part of a targeted attack on construction companies.  

Initial Intrusion

It was likely that during the correspondence over LinkedIn, the target user was solicited into following up over email regarding a prospective construction project, using their corporate email account.  In a probable attempt to establish a precedent of bi-directional correspondence so that subsequent malicious emails would not be flagged by traditional security tools, the attacker did not initially include suspicious links, attachments or use solicitous or inducive language within their initial emails.

Example of bi-directional email correspondence between the target and the attacker impersonating a legitimate employee of the construction company haus.com.
Figure 1: Example of bi-directional email correspondence between the target and the attacker impersonating a legitimate employee of the construction company haus.com.
Cyber AI Analyst investigation into one of the initial emails the target received from the attacker.
Figure 2: Cyber AI Analyst investigation into one of the initial emails the target received from the attacker.  

To accomplish the next stage of their attack, the attacker shared a link, hidden behind the inducing text “VIEW ALL FILES”, to a malicious file using the Hightail cloud storage service. This is also a common method employed by attackers to evade detection, as this method of file sharing does not involve attachments that can be scanned by traditional security tools, and legitimate cloud storage services are less likely to be blocked.

OSINT analysis on the malicious link link shows the file hosted on Hightail was a HTML file with the associated message “Following up on our LinkedIn conversation”.  Further analysis suggests the file contained obfuscated Javascript that, once opened, would automatically redirect the user to a malicious domain impersonating a legitimate Microsoft login page for credential harvesting purposes.  

The malicious HTML file containing obfuscated Javascript, where the highlighted string references the malicious credential harvesting domain.
Figure 3: The malicious HTML file containing obfuscated Javascript, where the highlighted string references the malicious credential harvesting domain.
Screenshot of fraudulent Microsoft Sign In page hosted on the malicous credential harvesting domain.
Figure 4: Screenshot of fraudulent Microsoft Sign In page hosted on the malicious credential harvesting domain.

Although there was prior email correspondence with the attacker, this email was not automatically deemed safe by Darktrace and was further analyzed for unusual properties and unusual communications for the recipient and the recipient’s peer group.  

Darktrace determined that:

  • It was unusual for this file storage solution to be referenced in communications to the user and the wider network
  • Textual properties of the email body suggested a high level of inducement from the sender, with a high level of focus on the phishing link.
  • The full link contained suspicious properties suggesting it is high risk.
Darktrace’s analysis of the phishing email, presenting key information about the unusual characteristics of this email, information on highlighted content, and an overview of actions that were initially applied.
Figure 5: Darktrace’s analysis of the phishing email, presenting key information about the unusual characteristics of this email, information on highlighted content, and an overview of actions that were initially applied.  

Based on these anomalies, Darktrace initially moved the phishing email to the junk folder and locked the link, preventing the user from directly accessing the malicious file hosted on Hightail.  However, the customer’s security team released the email, likely upon end-user request, allowing the target user to access the file and ultimately enter their credentials into that credential harvesting domain.

Darktrace alerts triggered by the malicious phishing email and the corresponding Autonomous Response actions.
Figure 6: Darktrace alerts triggered by the malicious phishing email and the corresponding Autonomous Response actions.

Lateral Movement

Correspondence between the attacker and target continued for two days after the credential harvesting payload was delivered.  Five days later, Darktrace detected an unusual login using multi-factor authentication (MFA) from a rare external IP and ASN that coincided with Darktrace/Email logs showing access to the credential harvesting link.

This attempt to bypass MFA, known as an Office365 Shell WCSS attack, was likely achieved by inducing the target to enter their credentials and legitimate MFA token into the fake Microsoft login page. This was then relayed to Microsoft by the attacker and used to obtain a legitimate session. The attacker then reused the legitimate token to log into Exchange Online from a different IP and registered their own device for MFA.

Screenshot within Darktrace/Email of the phishing email that was released by the security team, showing the recipient clicked the link to file storage where the malicious payload was stored.
Figure 7: Screenshot within Darktrace/Email of the phishing email that was released by the security team, showing the recipient clicked the link to file storage where the malicious payload was stored.
Event Log showing a malicious login and MFA bypass at 17:57:16, shortly after the link was clicked.  Highlighted in green is activity from the legitimate user prior to the malicious login, using Edge.
Figure 8: Event Log showing a malicious login and MFA bypass at 17:57:16, shortly after the link was clicked.  Highlighted in green is activity from the legitimate user prior to the malicious login, using Edge. Highlighted in orange and red is the malicious activity using Chrome.

The IP addresses used by the attacker appear to be part of anonymization infrastructure, but are not associated with any known indicators of compromise (IoCs) that signature-based detections would identify [9] [10].

In addition to  logins being observed within half an hour of each other from multiple geographically impossible locations (San Francisco and Phoenix), the unexpected usage of Chrome browser, compared to Edge browser previously used, provided Darktrace with further evidence that this activity was unlikely to originate from the legitimate user.  Although the user was a salesperson who frequently travelled for their role, Darktrace’s Self-Learning AI understood that the multiple logins from these locations was highly unusual at the user and group level, and coupled with the subsequent unexpected account modification, was a likely indicator of account compromise.  

Accomplish mission

Although the email had been manually released by the security team, allowing the attack to propagate, additional layers of defense were triggered as Darktrace's Autonomous Response initiated “Disable User” actions upon detection of the multiple unusual logins and the unauthorized registration of security information.  

However, the customer had configured Autonomous Response to require human confirmation, therefore no actions were taken until the security team manually approved them over two hours later. In that time, access to mail items and other SharePoint files from the unusual IP address was detected, suggesting a potential loss of confidentiality to business data.

Advanced Search query showing several FilePreviewed and MailItemsAccessed events from either the IPs used by the attacker, or using the software Chrome.  Note some of the activity originated from Microsoft IPs which may be whitelisted by traditional security tools.
Figure 9: Advanced Search query showing several FilePreviewed and MailItemsAccessed events from either the IPs used by the attacker, or using the software Chrome.  Note some of the activity originated from Microsoft IPs which may be whitelisted by traditional security tools.

However, it appears that the attacker was able to maintain access to the compromised account, as login and mail access events from 199.231.85[.]153 continued to be observed until the afternoon of the next day.  

Conclusion

This incident demonstrates the necessity of AI to security teams, with Darktrace’s ActiveAI Security Platform detecting a sophisticated phishing attack where human judgement fell short and initiated a real-time response when security teams could not physically respond as fast.  

Security teams are very familiar with social engineering and impersonation attempts, but these attacks remain highly prevalent due to the widespread adoption of technologies that enable these techniques to be deployed with great sophistication and ease.  In particular, the popularity of information-rich platforms like LinkedIn that are geared towards connecting with unknown people make it an attractive initial access point for malicious attackers.

In the second half of 2023 alone, over 200 thousand fake profiles were reported by members on LinkedIn [11].  Fake profiles can be highly sophisticated, use professional images, contain compelling descriptions, reference legitimate company listings and present believable credentials.  

It is unrealistic to expect end users to defend themselves against such sophisticated impersonation attempts. Moreover, it is extremely difficult for human defenders to recognize every fraudulent interaction amidst a sea of fake profiles. Instead, defenders should leverage AI, which can conduct autonomous investigations without human biases and limitations. AI-driven security can ensure successful detection of fraudulent or malicious activity by learning what real users and devices look like and identifying deviations from their learned behaviors that may indicate an emerging threat.

Appendices

Darktrace Model Detections

DETECT/ Apps

SaaS / Compromise / SaaS Anomaly Following Anomalous Login

SaaS / Compromise / Unusual Login and Account Update

SaaS / Unusual Activity / Multiple Unusual External Sources For SaaS Credential

SaaS / Access / Unusual External Source for SaaS Credential Use

SaaS / Compliance / M365 Security Information Modified

RESPOND/ Apps

Antigena / SaaS / Antigena Suspicious SaaS Activity Block

Antigena / SaaS / Antigena Unusual Activity Block

DETECT & RESPOND/ Email

·      Link / High Risk Link + Low Sender Association

·      Link / New Correspondent Classified Link

·      Link / Watched Link Type

·      Antigena Anomaly

·      Association / Unknown Sender

·      History / New Sender

·      Link / Link to File Storage

·      Link / Link to File Storage + Unknown Sender

·      Link / Low Link Association

List of IoCs

·      142.252.106[.]251 - IP            - Possible malicious IP used by attacker during cloud account compromise

·      199.231.85[.]153 – IP - Probable malicious IP used by attacker during cloud account compromise

·      vukoqo.hebakyon[.]com – Endpoint - Credential harvesting endpoint

MITRE ATT&CK Mapping

·      Resource Development - T1586 - Compromise Accounts

·      Resource Development - T1598.003 – Spearphishing Link

·      Persistence - T1078.004 - Cloud Accounts

·      Persistence - T1556.006 - Modify Authentication Process: Multi-Factor Authentication

·      Reconnaissance - T1593.001 – Social Media

·      Reconnaissance - T1598 – Phishing for Information

·      Reconnaissance - T1589.001 – Credentials

·      Reconnaissance - T1591.002 – Business Relationships

·      Collection - T1111 – Multifactor Authentication Interception

·      Collection - T1539 – Steal Web Session Cookie

·      Lateral Movement - T1021.007 – Cloud Services

·      Lateral Movement - T1213.002 - Sharepoint

References

[1] Jessica Barker, Hacked: The secrets behind cyber attacks, (London: Kogan Page, 2024), p. 130-146.

[2] https://www.bitdefender.co.uk/blog/hotforsecurity/5-linkedin-scams-and-how-to-avoid-them/

[3] https://www.washingtonpost.com/technology/2023/08/31/linkedin-personal-posts/

[4] https://www.forbes.com/sites/joshbersin/2012/05/21/facebook-vs-linkedin-whats-the-difference/

[5] https://thelinkedblog.com/2022/3-reasons-why-you-should-make-your-profile-public-1248/

[6] https://www.linkedin.com/pulse/50-linkedin-statistics-every-professional-should-ti9ue

[7] https://www.nytimes.com/2022/09/24/business/linkedin-social-experiments.html

[8] https://darktrace.com/blog/the-domain-game-how-email-attackers-are-buying-their-way-into-inboxes

[9] https://spur.us/context/142.252.106[.]251

[10] https://spur.us/context/199.231.85[.]153

[11]https://www.statista.com/statistics/1328849/linkedin-number-of-fake-accounts-detected-and-removed

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Nicole Wong
Cyber Security Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

January 29, 2025

/

Inside the SOC

Bytesize Security: Insider Threats in Google Workspace

Default blog imageDefault blog image

What is an insider threat?

An insider threat is a cyber risk originating from within an organization. These threats can involve actions such as an employee inadvertently clicking on a malicious link (e.g., a phishing email) or an employee with malicious intent conducting data exfiltration for corporate sabotage.

Insiders often exploit their knowledge and access to legitimate corporate tools, presenting a continuous risk to organizations. Defenders must protect their digital estate against threats from both within and outside the organization.

For example, in the summer of 2024, Darktrace / IDENTITY successfully detected a user in a customer environment attempting to steal sensitive data from a trusted Google Workspace service. Despite the use of a legitimate and compliant corporate tool, Darktrace identified anomalies in the user’s behavior that indicated malicious intent.

Attack overview: Insider threat

In June 2024, Darktrace detected unusual activity involving the Software-as-a-Service (SaaS) account of a former employee from a customer organization. This individual, who had recently left the company, was observed downloading a significant amount of data in the form of a “.INDD” file (an Adobe InDesign document typically used to create page layouts [1]) from Google Drive.

While the use of Google Drive and other Google Workspace platforms was not unexpected for this employee, Darktrace identified that the user had logged in from an unfamiliar and suspicious IPv6 address before initiating the download. This anomaly triggered a model alert in Darktrace / IDENTITY, flagging the activity as potentially malicious.

A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.
Figure 1: A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.

Following this detection, the customer reached out to Darktrace’s Security Operations Center (SOC) team via the Security Operations Support service for assistance in triaging and investigating the incident further. Darktrace’s SOC team conducted an in-depth investigation, enabling the customer to identify the exact moment of the file download, as well as the contents of the stolen documents. The customer later confirmed that the downloaded files contained sensitive corporate data, including customer details and payment information, likely intended for reuse or sharing with a new employer.

In this particular instance, Darktrace’s Autonomous Response capability was not active, allowing the malicious insider to successfully exfiltrate the files. If Autonomous Response had been enabled, Darktrace would have immediately acted upon detecting the login from an unusual (in this case 100% rare) location by logging out and disabling the SaaS user. This would have provided the customer with the necessary time to review the activity and verify whether the user was authorized to access their SaaS environments.

Conclusion

Insider threats pose a significant challenge for traditional security tools as they involve internal users who are expected to access SaaS platforms. These insiders have preexisting knowledge of the environment, sensitive data, and how to make their activities appear normal, as seen in this case with the use of Google Workspace. This familiarity allows them to avoid having to use more easily detectable intrusion methods like phishing campaigns.

Darktrace’s anomaly detection capabilities, which focus on identifying unusual activity rather than relying on specific rules and signatures, enable it to effectively detect deviations from a user’s expected behavior. For instance, an unusual login from a new location, as in this example, can be flagged even if the subsequent malicious activity appears innocuous due to the use of a trusted application like Google Drive.

Credit to Vivek Rajan (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

SaaS / Resource::Unusual Download Of Externally Shared Google Workspace File

References

[1]https://www.adobe.com/creativecloud/file-types/image/vector/indd-file.html

MITRE ATT&CK Mapping

Technqiue – Tactic – ID

Data from Cloud Storage Object – COLLECTION -T1530

Continue reading
About the author
Vivek Rajan
Cyber Analyst

Blog

/

January 28, 2025

/
No items found.

Reimagining Your SOC: How to Achieve Proactive Network Security

Default blog imageDefault blog image

Introduction: Challenges and solutions to SOC efficiency

For Security Operation Centers (SOCs), reliance on signature or rule-based tools – solutions that are always chasing the latest update to prevent only what is already known – creates an excess of false positives. SOC analysts are therefore overwhelmed by a high volume of context-lacking alerts, with human analysts able to address only about 10% due to time and resource constraints. This forces many teams to accept the risks of addressing only a fraction of the alerts while novel threats go completely missed.

74% of practitioners are already grappling with the impact of an AI-powered threat landscape, which amplifies challenges like tool sprawl, alert fatigue, and burnout. Thus, achieving a resilient network, where SOC teams can spend most of their time getting proactive and stopping threats before they occur, feels like an unrealistic goal as attacks are growing more frequent.

Despite advancements in security technology (advanced detection systems with AI, XDR tools, SIEM aggregators, etc...), practitioners are still facing the same issues of inefficiency in their SOC, stopping them from becoming proactive. How can they select security solutions that help them achieve a proactive state without dedicating more human hours and resources to managing and triaging alerts, tuning rules, investigating false positives, and creating reports?

To overcome these obstacles, organizations must leverage security technology that is able to augment and support their teams. This can happen in the following ways:

  1. Full visibility across the modern network expanding into hybrid environments
  2. Have tools that identifies and stops novel threats autonomously, without causing downtime
  3. Apply AI-led analysis to reduce time spent on manual triage and investigation

Your current solutions might be holding you back

Traditional cybersecurity point solutions are reliant on using global threat intelligence to pattern match, determine signatures, and consequently are chasing the latest update to prevent only what is known. This means that unknown threats will evade detection until a patient zero is identified. This legacy approach to threat detection means that at least one organization needs to be ‘patient zero’, or the first victim of a novel attack before it is formally identified.

Even the point solutions that claim to use AI to enhance threat detection rely on a combination of supervised machine learning, deep learning, and transformers to

train and inform their systems. This entails shipping your company’s data out to a large data lake housed somewhere in the cloud where it gets blended with attack data from thousands of other organizations. The resulting homogenized dataset gets used to train AI systems — yours and everyone else’s — to recognize patterns of attack based on previously encountered threats.

While using AI in this way reduces the workload of security teams who would traditionally input this data by hand, it emanates the same risk – namely, that AI systems trained on known threats cannot deal with the threats of tomorrow. Ultimately, it is the unknown threats that bring down an organization.

The promise and pitfalls of XDR in today's threat landscape

Enter Extended Detection and Response (XDR): a platform approach aimed at unifying threat detection across the digital environment. XDR was developed to address the limitations of traditional, fragmented tools by stitching together data across domains, providing SOC teams with a more cohesive, enterprise-wide view of threats. This unified approach allows for improved detection of suspicious activities that might otherwise be missed in siloed systems.

However, XDR solutions still face key challenges: they often depend heavily on human validation, which can aggravate the already alarmingly high alert fatigue security analysts experience, and they remain largely reactive, focusing on detecting and responding to threats rather than helping prevent them. Additionally, XDR frequently lacks full domain coverage, relying on EDR as a foundation and are insufficient in providing native NDR capabilities and visibility, leaving critical gaps that attackers can exploit. This is reflected in the current security market, with 57% of organizations reporting that they plan to integrate network security products into their current XDR toolset[1].

Why settling is risky and how to unlock SOC efficiency

The result of these shortcomings within the security solutions market is an acceptance of inevitable risk. From false positives driving the barrage of alerts, to the siloed tooling that requires manual integration, and the lack of multi-domain visibility requiring human intervention for business context, security teams have accepted that not all alerts can be triaged or investigated.

While prioritization and processes have improved, the SOC is operating under a model that is overrun with alerts that lack context, meaning that not all of them can be investigated because there is simply too much for humans to parse through. Thus, teams accept the risk of leaving many alerts uninvestigated, rather than finding a solution to eliminate that risk altogether.

Darktrace / NETWORK is designed for your Security Operations Center to eliminate alert triage with AI-led investigations , and rapidly detect and respond to known and unknown threats. This includes the ability to scale into other environments in your infrastructure including cloud, OT, and more.

Beyond global threat intelligence: Self-Learning AI enables novel threat detection & response

Darktrace does not rely on known malware signatures, external threat intelligence, historical attack data, nor does it rely on threat trained machine learning to identify threats.

Darktrace’s unique Self-learning AI deeply understands your business environment by analyzing trillions of real-time events that understands your normal ‘pattern of life’, unique to your business. By connecting isolated incidents across your business, including third party alerts and telemetry, Darktrace / NETWORK uses anomaly chains to identify deviations from normal activity.

The benefit to this is that when we are not predefining what we are looking for, we can spot new threats, allowing end users to identify both known threats and subtle, never-before-seen indicators of malicious activity that traditional solutions may miss if they are only looking at historical attack data.

AI-led investigations empower your SOC to prioritize what matters

Anomaly detection is often criticized for yielding high false positives, as it flags deviations from expected patterns that may not necessarily indicate a real threat or issues. However, Darktrace applies an investigation engine to automate alert triage and address alert fatigue.

Darktrace’s Cyber AI Analyst revolutionizes security operations by conducting continuous, full investigations across Darktrace and third-party alerts, transforming the alert triage process. Instead of addressing only a fraction of the thousands of daily alerts, Cyber AI Analyst automatically investigates every relevant alert, freeing up your team to focus on high-priority incidents and close security gaps.

Powered by advanced machine-learning techniques, including unsupervised learning, models trained by expert analysts, and tailored security language models, Cyber AI Analyst emulates human investigation skills, testing hypotheses, analyzing data, and drawing conclusions. According to Darktrace Internal Research, Cyber AI Analyst typically provides a SOC with up to  50,000 additional hours of Level 2 analysis and written reporting annually, enriching security operations by producing high level incident alerts with full details so that human analysts can focus on Level 3 tasks.

Containing threats with Autonomous Response

Simply quarantining a device is rarely the best course of action - organizations need to be able to maintain normal operations in the face of threats and choose the right course of action. Different organizations also require tailored response functions because they have different standards and protocols across a variety of unique devices. Ultimately, a ‘one size fits all’ approach to automated response actions puts organizations at risk of disrupting business operations.

Darktrace’s Autonomous Response tailors its actions to contain abnormal behavior across users and digital assets by understanding what is normal and stopping only what is not. Unlike blanket quarantines, it delivers a bespoke approach, blocking malicious activities that deviate from regular patterns while ensuring legitimate business operations remain uninterrupted.

Darktrace offers fully customizable response actions, seamlessly integrating with your workflows through hundreds of native integrations and an open API. It eliminates the need for costly development, natively disarming threats in seconds while extending capabilities with third-party tools like firewalls, EDR, SOAR, and ITSM solutions.

Unlocking a proactive state of security

Securing the network isn’t just about responding to incidents — it’s about being proactive, adaptive, and prepared for the unexpected. The NIST Cybersecurity Framework (CSF 2.0) emphasizes this by highlighting the need for focused risk management, continuous incident response (IR) refinement, and seamless integration of these processes with your detection and response capabilities.

Despite advancements in security technology, achieving a proactive posture is still a challenge to overcome because SOC teams face inefficiencies from reliance on pattern-matching tools, which generate excessive false positives and leave many alerts unaddressed, while novel threats go undetected. If SOC teams are spending all their time investigating alerts then there is no time spent getting ahead of attacks.

Achieving proactive network resilience — a state where organizations can confidently address challenges at every stage of their security posture — requires strategically aligned solutions that work seamlessly together across the attack lifecycle.

References

1.       Market Guide for Extended Detection and Response, Gartner, 17thAugust 2023 - ID G00761828

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI