Blog
/
/
January 26, 2024

Post-Exploitation Activities of Ivanti CS/PS Appliances

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
26
Jan 2024
Darktrace’s teams have observed a surge in malicious activities targeting Ivanti Connect Secure (CS) and Ivanti Policy Secure (PS) appliances. Learn more!

What are 'Unknown Unknowns'?

When critical vulnerabilities in Internet-facing assets are not yet publicly disclosed, they can provide unfettered access to organizations’ networks. Threat actors’ exploitation of these vulnerabilities are prime examples of “unknown unknowns” – behaviors which security teams are not even aware that they are not aware of.  

Therefore, it is not surprising that zero-day vulnerabilities in Internet-facing assets are so attractive to state-linked actors and cybercriminals. These criminals will abuse the access these vulnerabilities afford them to progress towards harmful or disruptive objectives. This trend in threat actor activity was particularly salient in January 2024, following the disclosure of two critical vulnerabilities in Ivanti Connect Secure (CS) and Ivanti Policy Secure (PS) appliances. The widespread exploitation of these vulnerabilities was mirrored across Darktrace’s customer base in mid-January 2024, with Darktrace’s Security Operations Center (SOC) and Threat Research teams observing a surge in malicious activities targeting customers’ CS/PS appliances.

Vulnerabilities in Ivanti CS/PS

On January 10, 2024, Ivanti published a Security Advisory [1] and a Knowledge Base article [2] relating to the following two vulnerabilities in Ivanti Connect Secure (CS) and Ivanti Policy Secure (PS):

  • CVE-2023-46805 (CVSS: 8.2; Type: Authentication bypass vulnerability)
  • CVE-2024-21887 (CVSS: 9.1; Type: Command injection vulnerability)

Conjoined exploitation of these vulnerabilities allows for unauthenticated, remote code execution (RCE) on vulnerable Ivanti systems. Volexity [3] and Mandiant [4] reported clusters of CS/PS compromises, tracked as UTA0178 and UNC5221 respectively. UTA0178 and UNC5221 compromises involve exploitation of CVE-2023-46805 and CVE-2024-21887 to deliver web shells and JavaScript credential harvesters to targeted CS/PS appliances. Both Volexity and Mandiant linked these compromises to a likely espionage-motivated, state-linked actor. GreyNoise [5] and Volexity [6] also reported likely cybercriminal activities targeting CS/PS appliances to deliver cryptominers.

The scale of this recent Ivanti CS/PS exploitation is illustrated by research findings recently shared by Censys [7]. According to these findings, as of January 22, around 1.5% of 26,000 Internet-exposed Ivanti CS appliances have been compromised, with the majority of compromised hosts falling within the United States. As cybercriminal interest in these Ivanti CS/PS vulnerabilities continues to grow, it is likely that so too will the number of attacks targeting them.

Observed Malicious Activities

Since January 15, 2024, Darktrace’s SOC and Threat Research team have observed a significant volume of malicious activities targeting customers’ Ivanti CS/PS appliances. Amongst the string of activities that were observed, the following threads were identified as salient:

  • Exploit validation activity
  • Exfiltration of system information
  • Delivery of C2 implant from AWS
  • Delivery of JavaScript credential stealer
  • SimpleHelp usage
  • Encrypted C2 on port 53
  • Delivery of cryptominer

Exploit Validation Activity

Malicious actors were observed using the out-of-band application security testing (OAST) services, Interactsh and Burp Collaborator, to validate exploits for CS/PS vulnerabilities. Malicious use of OAST services for exploit validation is common and has been seen in the early stages of previous campaigns targeting Ivanti systems [8]. In this case, the Interact[.]sh exploit tests were evidenced by CS/PS appliances making GET requests with a cURL User-Agent header to subdomains of 'oast[.]live', 'oast[.]site', 'oast[.]fun', 'oast[.]me', 'oast[.]online' and 'oast[.]pro'.  Burp Collaborator exploit tests were evidenced by CS/PS appliances making GET requests with a cURL User-Agent header to subdomains of ‘collab.urmcyber[.]xyz’ and ‘dnslog[.]store’.

Figure 1: Event Log showing a CS/PS appliance contacting an 'oast[.]pro' endpoint.
Figure 2: Event Log showing a CS/PS appliance contacting a 'collab.urmcyber[.]xyz' endpoint.
Figure 3: Packet capture (PCAP) of an Interactsh GET request.
Figure 4: PCAP of a Burp Collaborator GET request.

Exfiltration of System Information

The majority of compromised CS/PS appliances identified by Darktrace were seen using cURL to transfer hundreds of MBs of data to the external endpoint, 139.180.194[.]132. This activity appeared to be related to a threat actor attempting to exfiltrate system-related information from CS/PS appliances. These data transfers were carried out via HTTP on ports 443 and 80, with the Target URIs ‘/hello’ and ‘/helloq’ being seen in the relevant HTTP POST requests. The files sent over these data transfers were ‘.dat’ and ‘.sys’ files with what seems to be the public IP address of the targeted appliance appearing in each file’s name.

Figure 5: Event Log shows a CS/PS appliance making a POST request to 139.180.194[.]132 whilst simultaneously receiving connections from suspicious external endpoints.
Figure 6: PCAP of a POST request to 139.180.194[.]132.

Delivery of Command-and-Control (C2) implant from Amazon Web Services (AWS)

In many of the compromises observed by Darktrace, the malicious actor in question was observed delivering likely Rust-based ELF payloads to the CS/PS appliance from the AWS endpoints, archivevalley-media.s3.amazonaws[.]com, abode-dashboard-media.s3.ap-south-1.amazonaws[.]com, shapefiles.fews.net.s3.amazonaws[.]com, and blooming.s3.amazonaws[.]com. In one particular case, these downloads were immediately followed by the delivery of an 18 MB payload (likely a C2 implant) from the AWS endpoint, be-at-home.s3.ap-northeast-2.amazonaws[.]com, to the CS/PS appliance. Post-delivery, the implant seems to have initiated SSL beaconing connections to the external host, music.farstream[.]org. Around this time, Darktrace also observed the actor initiating port scanning and SMB enumeration activities from the CS/PS appliance, likely in preparation for moving laterally through the network.

Figure 7: Advanced Search logs showing a CS/PS appliance beaconing to music.farstream[.]org after downloading several payloads from AWS.

Delivery of JavaScript credential stealer

In a small number of observed cases, Darktrace observed malicious actors delivering what appeared to be a JavaScript credential harvester to targeted CS/PS appliances. The relevant JavaScript code contains instructions to send login credentials to likely compromised websites. In one case, the website, www.miltonhouse[.]nl, appeared in the code snippet, and in another, the website, cpanel.netbar[.]org, was observed. Following the delivery of this JavaScript code, HTTPS connections were observed to these websites.  This likely credential harvester appears to strongly resemble the credential stealer observed by Mandiant (dubbed ‘WARPWIRE’) in UNC5221 compromises and the credential stealer observed by Veloxity in UTA0178 compromises.

Figure 8: PCAP of ‘/3.js’ GET request for JavaScript credential harvester.
Figure 9: Snippet of response to '/3.js’ GET request.
Figure 10: PCAP of ‘/auth.js’ GET request for JavaScript credential harvester.
Figure 11: Snippet of response to '/auth.js’ GET request.
Figure 12: Advanced Search logs showing VPN-connected devices sending data to www.miltonhouse[.]nl after the Ivanti CS appliance received the JavaScript code.

The usage of this JavaScript credential harvester did not occur in isolation, but rather appears to have occurred as part of a chain of activity involving several further steps. The delivery of the ‘www.miltonhouse[.]nl’ JavaScript stealer seems to have occurred as a step in the following attack chain:  

1. Ivanti CS/PS appliance downloads a 8.38 MB ELF file over HTTP (with Target URI ‘/revsocks_linux_amd64’) from 188.116.20[.]38

2. Ivanti CS/PS appliance makes a long SSL connection (JA3 client fingerprint: 19e29534fd49dd27d09234e639c4057e) over port 8444 to 185.243.112[.]245, with several MBs of data being exchanged

3. Ivanti CS/PS appliance downloads a Perl script over HTTP (with Target URI ‘/login.txt’) from 188.116.20[.]38

4. Ivanti CS/PS appliance downloads a 1.53 ELF MB file over HTTP (with Target URI ‘/aparche2’) from 91.92.240[.]113

5. Ivanti CS/PS appliance downloads a 4.5 MB ELF file over HTTP (with Target URI ‘/agent’) from 91.92.240[.]113

6. Ivanti CS/PS appliance makes a long SSL connection (JA3 client fingerprint: 19e29534fd49dd27d09234e639c4057e) over port 11601 to 45.9.149[.]215, with several MBs of data being exchanged

7. Ivanti CS/PS appliance downloads Javascript credential harvester over HTTP (with Target URI ‘/auth.js’) from 91.92.240[.]113

8. Ivanti CS/PS appliance downloads a Perl script over HTTP (with Target URI ‘/login.cgi’) from 91.92.240[.]113

9. Ivanti CS/PS appliance makes a long SSL connection (JA3 client fingerprint: 19e29534fd49dd27d09234e639c4057e) over port 11601 to 91.92.240[.]71, with several MBs of data being exchanged

10. Ivanti CS/PS appliance makes a long SSL connection (JA3 client fingerprint: 19e29534fd49dd27d09234e639c4057e) over port 11601 to 45.9.149[.]215, with several MBs of data being exchanged

11. Ivanti CS/PS appliance makes a long SSL connection (JA3 client fingerprint: 19e29534fd49dd27d09234e639c4057e) over port 8080 to 91.92.240[.]113, with several MBs of data being exchanged

12. Ivanti CS/PS appliance makes a long SSL connection (JA3 client fingerprint: 19e29534fd49dd27d09234e639c4057e) over port 11601 to 45.9.149[.]112, with several MBs of data being exchanged  

These long SSL connections likely represent a malicious actor creating reverse shells from the targeted CS/PS appliance to their C2 infrastructure. Whilst it is not certain that these behaviors are part of the same attack chain, the similarities between them (such as the Target URIs, the JA3 client fingerprint and the use of port 11601) seem to suggest a link.  

Figure 13: Advanced Search logs showing a chain of malicious behaviours from a CS/PS appliance.
Figure 14: Advanced Search data showing the JA3 client fingerprint ‘19e29534fd49dd27d09234e639c4057e’ exclusively appearing in the aforementioned, long SSL connections from the targeted CS/PS appliance.
Figure 15: PCAP of ‘/login.txt’ GET request for a Perl script.
Figure 16: PCAP of ‘/login.cgi’ GET request for a Pearl script.

SimpleHelp Usage

After gaining a foothold on vulnerable CS/PS appliances, certain actors attempted to deepen their foothold within targeted networks. In several cases, actors were seen using valid account credentials to pivot over RDP from the vulnerable CS/PS appliance to other internal systems. Over these RDP connections, the actors appear to have installed the remote support tool, SimpleHelp, onto targeted internal systems, as evidenced by these systems’ subsequent HTTP requests. In one of the observed cases, a lateral movement target downloaded a 7.33 MB executable file over HTTP (Target URI: /ta.dat; User-Agent header: Microsoft BITS/7.8) from 45.9.149[.]215 just before showing signs of SimpleHelp usage. The apparent involvement of 45.9.149[.]215 in these SimpleHelp threads may indicate a connection between them and the credential harvesting thread outlined above.

Figure 17: Advanced Search logs showing an internal system making SimpleHelp-indicating HTTP requests immediately after receiving large volumes of data over RDP from an CS/PS appliance.
Figure 18: PCAP of a SimpleHelp-related GET request.

Encrypted C2 over port 53

In a handful of the recently observed CS/PS compromises, Darktrace identified malicious actors dropping a 16 MB payload which appears to use SSL-based C2 communication on port 53. C2 communication on port 53 is a commonly used attack method, with various malicious payloads, including Cobalt Strike DNS, being known to tunnel C2 communications via DNS requests on port 53. Encrypted C2 communication on port 53, however, is less common. In the cases observed by Darktrace, payloads were downloaded from 103.13.28[.]40 and subsequently reached back out to 103.13.28[.]40 over SSL on port 53.

Figure 19: PCAP of a ‘/linb64.png’ GET request.
Figure 20: Advanced Search logs showing a CS/PS appliance making SSL conns over port 53 to 103.13.28[.]40 immediately after downloading a 16 MB payload from 103.13.28[.]40.

Delivery of cryptominer

As is often the case, financially motivated actors also appeared to have sought to exploit the Ivanti appliances, with actors observed exploiting CS/PS appliances to deliver cryptomining malware. In one case, Darktrace observed an actor installing a Monero cryptominer onto a vulnerable CS/PS appliance, with the miner being downloaded via HTTP on port 8089 from 192.252.183[.]116.

Figure 21: PCAP of GET request for a Bash script which appeared to kill existing cryptominers.
Figure 22: PCAP of a GET request for a JSON config file – returned config file contains mining details such as ‘auto.3pool[.]org:19999’.
Figure 23: PCAP of a GET request for an ELF payload

Potential Pre-Ransomware Post-Compromise Activity

In one observed case, a compromise of a customer’s CS appliance was followed by an attacker using valid account credentials to connect to the customer’s CS VPN subnet. The attacker used these credentials to pivot to other parts of the customer’s network, with tools and services such as PsExec, Windows Management Instrumentation (WMI) service, and Service Control being abused to facilitate the lateral movement. Other Remote Monitoring and Management (RMM) tools, such as AnyDesk and ConnectWise Control (previously known as ScreenConnect), along with certain reconnaissance tools such as Netscan, Nmap, and PDQ, also appear to have been used. The attacker subsequently exfiltrated data (likely via Rclone) to the file storage service, put[.]io, potentially in preparation for a double extortion ransomware attack. However, at the time of writing, it was not clear what the relation was between this activity and the CS compromise which preceded it.

Darktrace Coverage

Darktrace has observed malicious actors carrying out a variety of post-exploitation activities on Internet-exposed CS/PS appliances, ranging from data exfiltration to the delivery of C2 implants and crypto-miners. These activities inevitably resulted in CS/PS appliances displaying patterns of network traffic greatly deviating from their typical “patterns of life”.

Darktrace DETECT™ identified these deviations and generated a variety of model breaches (i.e, alerts) highlighting the suspicious activity. Darktrace’s Cyber AI Analyst™ autonomously investigated the ongoing compromises and connected the individual model breaches, viewing them as related incidents rather than isolated events. When active and configured in autonomous response mode, Darktrace RESPOND™ containted attackers’ operations by autonomously blocking suspicious patterns of network traffic as soon as they were identified by Darktrace DETECT.

The exploit validation activities carried out by malicious actors resulted in CS/PS servers making HTTP connections with cURL User-Agent headers to endpoints associated with OAST services such as Interactsh and Burp Collaborator. Darktrace DETECT recognized that this HTTP activity was suspicious for affected devices, causing the following models to breach:

  • Compromise / Possible Tunnelling to Bin Services
  • Device / Suspicious Domain
  • Anomalous Server Activity / New User Agent from Internet Facing System
  • Device / New User Agent
Figure 24: Event Log showing a CS/PS appliance breaching models due to its Interactsh HTTP requests.
Figure 25: Cyber AI Analyst Incident Event highlighting a CS/PS appliance's Interactsh connections.

Malicious actors’ uploads of system information to 139.180.194[.]132 resulted in cURL POST requests being sent from the targeted CS/PS appliances. Darktrace DETECT judged these HTTP POST requests to be anomalous, resulting in combinations of the following model breaches:

  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Anomalous Server Activity / Outgoing from Server
  • Anomalous Server Activity / New User Agent from Internet Facing System
  • Unusual Activity / Unusual External Data Transfer
  • Unusual Activity / Unusual External Data to New Endpoint
  • Anomalous Connection / Data Sent to Rare Domain
Figure 26: Event Log showing the creation of a model breach due to a CS/PS appliance’s POST request to 139.180.194[.]132.
Figure 27: Cyber AI Analyst Incident Event highlighting POST requests from a CS/PS appliance to 139.180.194[.]132.

The installation of AWS-hosted C2 implants onto vulnerable CS/PS appliances resulted in beaconing connections which Darktrace DETECT recognized as anomalous, leading to the following model breaches:

  • Compromise / Beacon to Young Endpoint
  • Compromise / Beaconing Activity To External Rare
  • Compromise / High Volume of Connections with Beacon Score

When enabled in autonomous response mode, Darktrace RESPOND was able to follow up these detections by blocking affected devices from connecting externally over port 80, 443, 445 or 8081, effectively shutting down the attacker’s beaconing activity.

Figure 28: Event Log showing the creation of a model breach and the triggering of an autonomous RESPOND action due to a CS/PS appliance's beaconing connections.

The use of encrypted C2 on port 53 by malicious actors resulted in CS/PS appliances making SSL connections over port 53. Darktrace DETECT judged this port to be uncommon for SSL traffic and consequently generated the following model breach:

  • Anomalous Connection / Application Protocol on Uncommon Port
Figure 29: Cyber AI Analyst Incident Event highlighting a ‘/linb64.png’ GET request from a CS/PS appliance to 103.13.28[.]40.
Figure 30: Event Log showing the creation of a model breach due to CS/PS appliance’s external SSL connection on port 53.
Figure 31: Cyber AI Analyst Incident Event highlighting a CS/PS appliance’s SSL connections over port 53 to 103.13.28[.]40.

Malicious actors’ attempts to run cryptominers on vulnerable CS/PS appliances resulted in downloads of Bash scripts and JSON files from external endpoints rarely visited by the CS/PS appliances themselves or by neighboring systems. Darktrace DETECT identified these deviations in device behavior and generated the following model breaches:

  • Anomalous File / Script from Rare External Location
  • Anomalous File / Internet Facing System File Download

Darktrace RESPOND, when configured to respond autonomously, was subsequently able to carry out a number of actions to contain the attacker’s activity. This included blocking all outgoing traffic on offending devices and enforcing a “pattern of life” on devices ensuring they had to adhere to expected network behavior.

Figure 32: Event Log showing the creation of model breaches and the triggering of autonomous RESPOND actions in response to a CS/PS appliance’s cryptominer download.
Figure 33: Cyber AI Analyst Incident Event highlighting a CS/PS appliance’s cryptominer download.

The use of RDP to move laterally and spread SimpleHelp to other systems resulted in CS/PS appliances using privileged credentials to initiate RDP sessions. These RDP sessions, and the subsequent traffic resulting from usage of SimpleHelp, were recognized by Darktrace DETECT as being highly out of character, prompting the following model breaches:

  • Anomalous Connection / Unusual Admin RDP Session
  • Device / New User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Compromise / Suspicious HTTP Beacons to Dotted Quad
  • Anomalous File / Anomalous Octet Stream (No User Agent)
  • Anomalous Server Activity / Rare External from Server
Figure 34: Event Log showing the creation of a model breach due to a CS/PS appliance’s usage of an admin credential to RDP to another internal system.
Figure 35: Event Log showing the creation of model breaches due to SimpleHelp-HTTP requests from a device targeted for lateral movement.
Figure 36: Cyber AI Analyst Incident Event highlighting the SimpleHelp-indicating HTTP requests made by an internal system.

Conclusion

The recent widespread exploitation of Ivanti CS/PS is a stark reminder of the threat posed by malicious actors armed with exploits for Internet-facing assets.

Based on the telemetry available to Darktrace, a wide range of malicious activities were carried out against CS/PS appliances, likely via exploitation of the recently disclosed CVE-2023-46805 and CVE-2024-21887 vulnerabilities.

These activities include the usage of OAST services for exploit validation, the exfiltration of system information to 139.180.194[.]132, the delivery of AWS-hosted C2 implants, the delivery of JavaScript credential stealers, the usage of SimpleHelp, the usage of SSL-based C2 on port 53, and the delivery of crypto-miners. These activities are far from exhaustive, and many more activities will undoubtedly be uncovered as the situation develops and our understanding grows.

While there were no patches available at the time of writing, Ivanti stated that they were expected to be released shortly, with the “first version targeted to be available to customers the week of 22 January 2023 and the final version targeted to be available the week of 19 February” [9].

Fortunately for vulnerable customers, in their absence of patches Darktrace DETECT was able to identify and alert for anomalous network activity that was carried out by malicious actors who had been able to successfully exploit the Ivanti CS and PS vulnerabilities. While the activity that followed these zero-day vulnerabilities may been able to have bypass traditional security tools reliant upon existing threat intelligence and indicators of compromise (IoCs), Darktrace’s anomaly-based approach allows it to identify such activity based on the subtle deviations in a devices behavior that typically emerge as threat actors begin to work towards their goals post-compromise.

In addition to Darktrace’s ability to identify this type of suspicious behavior, its autonomous response technology, Darktrace RESPOND is able to provide immediate follow-up with targeted mitigative actions to shut down malicious activity on affected customer environments as soon as it is detected.

Credit to: Nahisha Nobregas, SOC Analyst, Emma Foulger, Principle Cyber Analyst, and the Darktrace Threat Research Team

Appendices

List of IoCs Possible IoCs:

-       curl/7.19.7 (i686-redhat-linux-gnu) libcurl/7.63.0 OpenSSL/1.0.2n zlib/1.2.3

-       curl/7.19.7 (i686-redhat-linux-gnu) libcurl/7.63.0 OpenSSL/1.0.2n zlib/1.2.7

Mid-high confidence IoCs:

-       http://139.180.194[.]132:443/hello

-       http://139.180.194[.]132:443/helloq

-       http://blooming.s3.amazonaws[.]com/Ea7fbW98CyM5O (SHA256 hash: 816754f6eaf72d2e9c69fe09dcbe50576f7a052a1a450c2a19f01f57a6e13c17)

-       http://abode-dashboard-media.s3.ap-south-1.amazonaws[.]com/kaffMm40RNtkg (SHA256 hash: 47ff0ae9220a09bfad2a2fb1e2fa2c8ffe5e9cb0466646e2a940ac2e0cf55d04)

-       http://archivevalley-media.s3.amazonaws[.]com/bbU5Yn3yayTtV (SHA256 hash: c7ddd58dcb7d9e752157302d516de5492a70be30099c2f806cb15db49d466026)

-       http://shapefiles.fews.net.s3.amazonaws[.]com/g6cYGAxHt4JC1 (SHA256 hash: c26da19e17423ce4cb4c8c47ebc61d009e77fc1ac4e87ce548cf25b8e4f4dc28)

-       http://be-at-home.s3.ap-northeast-2.amazonaws[.]com/2ekjMjslSG9uI

-       music.farstream[.]org  • 104.21.86[.]153 / 172.67.221[.]78

-       http://197.243.22[.]27/3.js

-       http://91.92.240[.]113/auth.js

-       www.miltonhouse[.]nl • 88.240.53[.]22

-       cpanel.netbar[.]org • 146.19.212[.]12

-       http://188.116.20[.]38/revsocks_linux_amd64

-       185.243.112[.]245:8444

-        http://188.116.20[.]38/login.txt

-       http://91.92.240[.]113/aparche2 (SHA256 hash: 9d11c3cf10b20ff5b3e541147f9a965a4e66ed863803c54d93ba8a07c4aa7e50)

-       http://91.92.240[.]113/agent (SHA256 hash: 7967def86776f36ab6a663850120c5c70f397dd3834f11ba7a077205d37b117f)

-       45.9.149[.]215:11601

-       45.9.149[.]112:11601

-       http://91.92.240[.]113/login.cgi

-       91.92.240[.]71:11601

-       91.92.240[.]113:8080

-       http://45.9.149[.]215/ta.dat (SHA256 hash: 4bcf1333b3ad1252d067014c606fb3a5b6f675f85c59b69ca45669d45468e923)

-       91.92.241[.]18

-       94.156.64[.]252

-       http://144.172.76[.]76/lin86

-       144.172.122[.]14:443

-       http://185.243.115[.]58:37586/

-       http://103.13.28[.]40/linb64.png

-       103.13.28[.]40:53

-       159.89.82[.]235:8081

-       http://192.252.183[.]116:8089/u/123/100123/202401/d9a10f4568b649acae7bc2fe51fb5a98.sh

-       http://192.252.183[.]116:8089/u/123/100123/202401/sshd

-       http://192.252.183[.]116:8089/u/123/100123/202401/31a5f4ceae1e45e1a3cd30f5d7604d89.json

-       http://103.27.110[.]83/module/client_amd64

-       http://103.27.110[.]83/js/bootstrap.min.js?UUID=...

-       http://103.27.110[.]83/js/jquery.min.js

-       http://95.179.238[.]3/bak

-       http://91.92.244[.]59:8080/mbPHenSdr6Cf79XDAcKEVA

-       31.220.30[.]244

-       http://172.245.60[.]61:8443/SMUkbpX-0qNtLGsuCIuffAOLk9ZEBCG7bIcB2JT6GA/

-       http://172.245.60[.]61/ivanti

-       http://89.23.107[.]155:8080/l-5CzlHWjkp23gZiVLzvUg

-       http://185.156.72[.]51:8080/h7JpYIZZ1-rrk98v3YEy6w

-       http://185.156.72[.]51:8080/8uSQsOTwFyEAsXVwbAJ2mA

-       http://185.156.72[.]51:8080/vuln

-       185.156.72[.]51:4440

-       185.156.72[.]51:8080

-       185.156.72[.]51:4433

-       185.156.72[.]51:4446

-       185.156.72[.]51:4445

-       http://185.156.72[.]51/set.py

-       185.156.72[.]51:7777

-       45.9.151[.]107:7070

-       185.195.59[.]74:7070

-       185.195.59[.]74:20958

-       185.195.59[.]74:34436

-       185.195.59[.]74:37464

-       185.195.59[.]74:41468    

References

[1] https://forums.ivanti.com/s/article/CVE-2023-46805-Authentication-Bypass-CVE-2024-21887-Command-Injection-for-Ivanti-Connect-Secure-and-Ivanti-Policy-Secure-Gateways?language=en_US

[2] https://forums.ivanti.com/s/article/KB-CVE-2023-46805-Authentication-Bypass-CVE-2024-21887-Command-Injection-for-Ivanti-Connect-Secure-and-Ivanti-Policy-Secure-Gateways?language=en_US

[3] https://www.volexity.com/blog/2024/01/10/active-exploitation-of-two-zero-day-vulnerabilities-in-ivanti-connect-secure-vpn/

[4] https://www.mandiant.com/resources/blog/suspected-apt-targets-ivanti-zero-day

[5] https://www.greynoise.io/blog/ivanti-connect-secure-exploited-to-install-cryptominers

[6] https://www.volexity.com/blog/2024/01/18/ivanti-connect-secure-vpn-exploitation-new-observations/

[7] https://censys.com/the-mass-exploitation-of-ivanti-connect-secure/

[8] https://darktrace.com/blog/entry-via-sentry-analyzing-the-exploitation-of-a-critical-vulnerability-in-ivanti-sentry

[9] https://forums.ivanti.com/s/article/CVE-2023-46805-Authentication-Bypass-CVE-2024-21887-Command-Injection-for-Ivanti-Connect-Secure-and-Ivanti-Policy-Secure-Gateways?language=en_US  

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Sam Lister
SOC Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

Network

/

February 19, 2025

Darktrace Releases Annual 2024 Threat Insights

Default blog imageDefault blog image

Introduction: Darktrace’s threat research

Defenders must understand the threat landscape in order to protect against it. They can do that with threat intelligence.

Darktrace approaches threat intelligence with a unique perspective. Unlike traditional security vendors that rely on established patterns from past incidents, it uses a strategy that is rooted in the belief that identifying behavioral anomalies is crucial for identifying both known and novel threats.

For Darktrace analysts and researchers, the incidents detected by the AI solution mark the beginning of a deeper investigation, aiming to connect mitigated threats to wider trends from across the threat landscape. Through hindsight analysis, the Darktrace Threat Research team has highlighted numerous threats, including zero-day, n-day, and other novel attacks, showcasing their evolving nature and Darktrace’s ability to identify them.

In 2024, the Threat Research team observed major trends around vulnerabilities in internet-facing systems, new and re-emerging ransomware strains, and sophisticated email attacks. Read on to discover some of our key insights into the current cybersecurity threat landscape.

Multiple campaigns target vulnerabilities in internet-facing systems

It is increasingly common for threat actors to identify and exploit newly discovered vulnerabilities in widely used services and applications, and in some cases, these vulnerability exploitations occur within hours of disclosure.

In 2024, the most significant campaigns observed involved the ongoing exploitation of zero-day and n-day vulnerabilities in edge and perimeter network technologies. In fact, in the first half of the year, 40% of all identified campaign activity came from the exploitation of internet-facing devices. Some of the most common exploitations involved Ivanti Connect Secure (CS) and Ivanti Policy Secure (PS) appliances, Palo Alto Network (PAN-OS) firewall devices, and Fortinet appliances.

Darktrace helps security teams identify suspicious behavior quickly, as demonstrated with the critical vulnerability in PAN-OS firewall devices. The vulnerability was publicly disclosed on April 11, 2024, yet with anomaly-based detection, Darktrace’s Threat Research team was able to identify a range of suspicious behavior related to exploitation of this vulnerability, including command-and-control (C2) connectivity, data exfiltration, and brute-forcing activity, as early as March 26.

That means that Darktrace and our Threat Research team detected this Common Vulnerabilities and Exposure (CVE) exploitation 16 days before the vulnerability was disclosed. Addressing critical vulnerabilities quickly massively benefits security, as teams can reduce their effectiveness by slowing malicious operations and forcing attackers to pursue more costly and time-consuming methods.

Persistent ransomware threats continue to evolve

The continued adoption of the Ransomware-as-a-Service (RaaS) model provides even less experienced threat actors with the tools needed to carry out disruptive attacks, significantly lowering the barrier to entry.

The Threat Research team tracked both novel and re-emerging strains of ransomware across the customer fleet, including Akira, LockBit, and Lynx. Within these ransomware attempts and incidents, there were notable trends in attackers’ techniques: using phishing emails as an attack vector, exploiting legitimate tools to mask C2 communication, and exfiltrating data to cloud storage services.

Read the Annual 2024 Threat Report for the complete list of prominent ransomware actors and their commonly used techniques.

Onslaught of email threats continues

With a majority of attacks originating from email, it is crucial that organizations secure the inboxes and beyond.

Between December 21, 2023, and December 18, 2024, Darktrace / EMAIL detected over 30.4 million phishing emails across the fleet. Of these, 70% successfully bypassed Domain-based Message Authentication, Reporting, and Conformance (DMARC) verification checks and 55% passed through all other existing layers of customer email security.

The abuse of legitimate services and senders continued to be a significant method for threat actors throughout 2024. By leveraging trusted platforms and domains, malicious actors can bypass traditional security measures and increase the likelihood of their phishing attempts being successful.

This past year, there was a substantial use of legitimately authenticated senders and previously established domains, with 96% of phishing emails detected by Darktrace / EMAIL utilizing existing domains rather than registering new ones.

These are not the only types of email attacks we observed. Darktrace detected over 2.7 million emails with multistage payloads.

While most traditional cybersecurity solutions struggle to cover multiple vectors and recognize each stage of complex attacks as part of wider malicious activity, Darktrace can detect and respond across email, identities, network, and cloud.

Conclusion

The Darktrace Threat Research team continues to monitor the ever-evolving threat landscape. Major patterns over the last year have revealed the importance of fast-acting, anomaly-based detection like Darktrace provides.

For example, response speed is essential when campaigns target vulnerabilities in internet-facing systems, and these vulnerabilities can be exploited by attackers within hours of their disclosure if not even before that.

Similarly, anomaly-based detection can identify hard to find threats like ransomware attacks that increasingly use living-off-the-land techniques and legitimate tools to hide malicious activity. A similar pattern can be found in the realm of email security, where attacks are also getting harder to spot, especially as they frequently exploit trusted senders, use redirects via legitimate services, and craft attacks that bypass DMARC and other layers of email security.

As attacks appear with greater complexity, speed, and camouflage, defenders must have timely detection and containment capabilities to handle all emerging threats. These hard-to-spot attacks can be identified and stopped by Darktrace.

Download the full report

Discover the latest threat landscape trends and recommendations from the Darktrace Threat Research team.

Continue reading
About the author
The Darktrace Threat Research Team

Blog

/

OT

/

February 18, 2025

Unifying IT & OT With AI-Led Investigations for Industrial Security

Default blog imageDefault blog image

As industrial environments modernize, IT and OT networks are converging to improve efficiency, but this connectivity also creates new attack paths. Previously isolated OT systems are now linked to IT and cloud assets, making them more accessible to attackers.

While organizations have traditionally relied on air gaps, firewalls, data diodes, and access controls to separate IT and OT, these measures alone aren’t enough. Threat actors often infiltrate IT/Enterprise networks first then exploit segmentation, compromising credentials, or shared IT/OT systems to move laterally, escalate privileges, and ultimately enter the OT network.

To defend against these threats, organizations must first ensure they have complete visibility across IT and OT environments.

Visibility: The first piece of the puzzle

Visibility is the foundation of effective industrial cybersecurity, but it’s only the first step. Without visibility across both IT and OT, security teams risk missing key alerts that indicate a threat targeting OT at their earliest stages.

For Attacks targeting OT, early stage exploits often originate in IT environments, adversaries perform internal reconnaissance among other tactics and procedures but then laterally move into OT first affecting IT devices, servers and workstations within the OT network. If visibility is limited, these threats go undetected. To stay ahead of attackers, organizations need full-spectrum visibility that connects IT and OT security, ensuring no early warning signs are missed.

However, visibility alone isn’t enough. More visibility also means more alerts, this doesn’t just make it harder to separate real threats from routine activity, but bogs down analysts who have to investigate all these alerts to determine their criticality.

Investigations: The real bottleneck

While visibility is essential, it also introduces a new challenge: Alert fatigue. Without the right tools, analysts are often occupied investigating alerts with little to no context, forcing them to manually piece together information and determine if an attack is unfolding. This slows response times and increases the risk of missing critical threats.

Figure 1: Example ICS attack scenario

With siloed visibility across IT and OT each of these events shown above would be individually alerted by a detection engine with little to no context nor correlation. Thus, an analyst would have to try to piece together these events manually. Traditional security tools struggle to keep pace with the sophistication of these threats, resulting in an alarming statistic: less than 10% of alerts are thoroughly vetted, leaving organizations vulnerable to undetected breaches. As a result, incidents inevitably follow.

Darktrace’s Cyber AI Analyst uses AI-led investigations to improve workflows for analysts by automatically correlating alerts wherever they occur across both IT and OT. The multi-layered AI engine identifies high-priority incidents, and provides analysts with clear, actionable insights, reducing noise and highlighting meaningful threats. The AI significantly alleviates workloads, enabling teams to respond faster and more effectively before an attack escalates.

Overcoming organizational challenges across IT and OT

Beyond technical challenges like visibility and alert management, organizational dynamics further complicate IT-OT security efforts. Fundamental differences in priorities, workflows, and risk perspectives create challenges that can lead to misalignment between teams:

Non-transferable practices: IT professionals might assume that cybersecurity practices from IT environments can be directly applied to OT environments. This can lead to issues, as OT systems and workflows may not handle IT security processes as expected. It's crucial to recognize and respect the unique requirements and constraints of OT environments.

Segmented responsibilities: IT and OT teams often operate under separate organizational structures, each with distinct priorities, goals, and workflows. While IT focuses on data security, network integrity, and enterprise applications, OT prioritizes uptime, reliability, and physical processes.

Different risk perspectives: While IT teams focus on preventing cyber threats and regulatory violations, OT teams prioritize uptime and operational reliability making them drawn towards asset inventory tools that provide no threat detection capability.

Result: A combination of disparate and ineffective tools and misaligned teams can make any progress toward risk reduction at an organization seem impossible. The right tools should be able to both free up time for collaboration and prompt better communication between IT and OT teams where it is needed. However, different size operations structure their IT and OT teams differently which impacts the priorities for each team.

In real-world scenarios, small IT teams struggle to manage security across both IT and OT, while larger organizations with OT security teams face alert fatigue and numerous false positives slowing down investigations and hindering effective communication with the IT security teams.

By unifying visibility and investigations, Darktrace / OT helps organizations of all sizes detect threats earlier, streamline workflows, and enhance security across both IT and OT environments. The following examples illustrate how AI-driven investigations can transform security operations, improving detection, investigation, and response.

Before and after AI-led investigation

Before: Small manufacturing company

At a small manufacturing company, a 1-3 person IT team juggles everything from email security to network troubleshooting. An analyst might see unusual traffic through the firewall:

  • Unusual repeated outbound traffic from an IP within their OT network destined to an unidentifiable external IP.

With no dedicated OT security tools and limited visibility into the industrial network, they don’t know what the internal device in question is, if it is beaconing to a malicious external IP, and what it may be doing to other devices within the OT network. Without a centralized dashboard, they must manually check logs, ask operators about changes, and hunt for anomalies across different systems.

After a day of investigation, they concluded the traffic was not to be expected activity. They stop production within their smaller OT network, update their firewall rules and factory reset all OT devices and systems within the blast radius of the IP device in question.

After: Faster, automated response with Cyber AI Analyst

With Darktrace / OT and Cyber AI Analyst, the IT team moves from reactive, manual investigations to proactive, automated threat detection:

  • Cyber AI Analyst connects alerts across their IT and OT infrastructure temporally mapping them to attack frameworks and provides contextual analysis of how alerts are linked, revealing in real time attackers attempting lateral movement from IT to OT.
  • A human-readable incident report explains the full scope of the incident, eliminating hours of manual investigation.
  • The team is faster to triage as they are led directly to prioritized high criticality alerts, now capable of responding immediately instead of wasting valuable time hunting for answers.

By reducing noise, providing context, and automating investigations, Cyber AI Analyst transforms OT security, enabling small IT teams to detect, understand, and respond to threats—without deep OT cybersecurity expertise.

Before: Large critical infrastructure organization

In large critical infrastructure operations, OT and IT teams work in separate silos. The OT security team needs to quickly assess and prioritize alerts, but their system floods them with notifications:

  • Multiple new device connected to the ICS network alerts
  • Multiple failed logins to HMI detected
  • Multiple Unusual Modbus/TCP commands detected
  • Repeated outbound OT traffic to IT destinations

At first glance, these alerts seem important, but without context, it’s unclear whether they indicate a routine error, a misconfiguration, or an active cyber-attack. They might ask:

  • Are the failed logins just a mistake, or a brute-force attempt?
  • Is the outbound traffic part of a scheduled update, or data exfiltration?

Without correlation across events, the engineer must manually investigate each one—checking logs, cross-referencing network activity, and contacting operators—wasting valuable time. Meanwhile, if it’s a coordinated attack, the adversary may already be disrupting operations.

After: A new workflow with Cyber AI Analyst

With Cyber AI Analyst, the OT security team gets clear, automated correlation of security events, making investigations faster and more efficient:

  • Automated correlation of OT threats: Instead of isolated alerts, Cyber AI Analyst stitches together related events, providing a single, high-confidence incident report that highlights key details.
  • Faster time to meaning: The system connects anomalous behaviors (e.g., failed logins, unusual traffic from an HMI, and unauthorized PLC modifications) into a cohesive narrative, eliminating hours of manual log analysis.
  • Prioritized and actionable alerts: OT security receives clear, ranked incidents, immediately highlighting what matters most.
  • Rapid threat understanding: Security teams know within minutes whether an event is a misconfiguration or a cyber-attack, allowing for faster containment.

With Cyber AI Analyst, large organizations cut through alert noise, accelerate investigations, and detect threats faster—without disrupting OT operations.

An AI-led approach to industrial cybersecurity

Security vendors with a primary focus on IT may lack insight into OT threats. Even OT-focused vendors have limited visibility into IT device exploitation within OT networks, leading to failed ability to detect early indicators of compromise. A comprehensive solution must account for the unique characteristics of various OT environments.

In a world where industrial security is no longer just about protecting OT but securing the entire digital-physical ecosystem as it interacts with the OT network, Darktrace / OT is an AI-driven solution that unifies visibility across IT, IoT and OT, Cloud into one cohesive defense strategy.

Whether an attack originates from an external breach, an insider threat, a supply chain compromise, in the Cloud, OT, or IT domains Cyber AI Analyst ensures that security teams see the full picture - before disruption occurs.

Learn more about Darktrace / OT 

  • Unify IT and OT security under a single platform, ensuring seamless communication and protection for all interconnected devices.
  • Maintain uptime with AI-driven threat containment, stopping attacks without disrupting production.
  • Mitigate risks with or without patches, leveraging MITRE mitigations to reduce attack opportunities.

Download the solution brief to see how Darktrace secures critical infrastructure.

Continue reading
About the author
Daniel Simonds
Director of Operational Technology
Your data. Our AI.
Elevate your network security with Darktrace AI