Blog
/
/
January 8, 2024

Uncovering CyberCartel Threats in Latin America

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
08
Jan 2024
Discover how Darktrace investigates CyberCartel attacks targeting Latin America. Learn about the methods and findings of this crucial analysis.

Introduction

In September 2023, Darktrace published its first Half-Year Threat Report, highlighting Threat Research, Security Operation Center (SOC), model breach, and Cyber AI Analyst analysis and trends across the Darktrace customer fleet. According to Darktrace’s Threat Report, the most observed threat type to affect Darktrace customers during the first half of 2023 was Malware-as-a-Service (Maas). The report highlighted a growing trend where malware strains, specifically in the MaaS ecosystem, “use cross-functional components from other strains as part of their evolution and customization” [1].  

Darktrace’s Threat Research team assessed this ‘Frankenstein’ approach would very likely increase, as shown by the fact that indicators of compromise (IoCs) are becoming “less and less mutually exclusive between malware strains as compromised infrastructure is used by multiple threat actors through access brokers or the “as-a-Service” market” [1].

Darktrace investigated one such threat during the last months of summer 2023, eventually leading to the discovery of CyberCartel-related activity across a significant number of Darktrace customers, especially in Latin America.

CyberCartel Overview and Darktrace Coverage

During a threat hunt, Darktrace’s Threat Research team discovered the download of a binary with a unique Uniform Resource Identifier (URI) pattern. When examining Darktrace’s customer base, it was discovered that binaries with this same URI pattern had been downloaded by a significant number of customer accounts, especially by customers based in Latin America. Although not identical, the targets and tactics, techniques, and procedures (TTPs) resembled those mentioned in an article regarding a botnet called Fenix [2], particularly active in Latin America.

During the Threat Research team’s investigation, nearly 40 potentially affected customer accounts were identified. Darktrace’s global Threat Research team investigates pervasive threats across Darktrace’s customer base daily. This cross-fleet research is based on Darktrace’s anomaly-based detection capability, Darktrace DETECT™, and revolves around technical analysis and contextualization of detection information.

Amid the investigation, further open-source intelligence (OSINT) research revealed that most indicators observed during Darktrace’s investigations were associated to a Latin American threat group named CyberCartel, with a small number of IoCs being associated with the Fenix botnet. While CyberCartel seems to have been active since 2012 and relies on MaaS offerings from well-known malware families, Fenix botnet was allegedly created at the end of last year and “specifically targets users accessing government services, particularly tax-paying individuals in Mexico and Chile” [2].

Both groups share similar targets and TTPs, as well as objectives: installing malware with information-stealing capabilities. In the case of Fenix infections, the compromised device will be added to a botnet and execute tasks given by the attacker(s); while in the case of CyberCartel, it can lead to various types of second-stage info-stealing and Man-in-the-Browser capabilities, including retrieving system information from the compromised device, capturing screenshots of the active browsing tab, and redirecting the user to fraudulent websites such as fake banking sites. According to a report by Metabase Q [2], both groups possibly share command and control (C2) infrastructure, making accurate attribution and assessment of the confidence level for which group was affecting the customer base extremely difficult. Indeed, one of the C2 IPs (104.156.149[.]33) observed on nearly 20 customer accounts during the investigation had OSINT evidence linking it to both CyberCartel and Fenix, as well as another group known to target Mexico called Manipulated Caiman [3] [4] [5].

CyberCartel and Fenix both appear to target banking and governmental services’ users based in Latin America, especially individuals from Mexico and Chile. Target institutions purportedly include tax administration services and several banks operating in the region. Malvertising and phishing campaigns direct users to pages imitating the target institutions’ webpages and prompt the download of a compressed file advertised in a pop-up window. This file claims enhance the user’s security and privacy while navigating the webpage but instead redirects the user to a compromised website hosting a zip file, which itself contains a URL file containing instructions for retrieval of the first stage payload from a remote server.

pop-up window with malicious file
Figure 1: Example of a pop-up window asking the user to download a compressed file allegedly needed to continue navigating the portal. Connections to the domain srlxlpdfmxntetflx[.]com were observed in one account investigated by Darktrace

During their investigations, the Threat Research team observed connections to 100% rare domains (e.g., situacionfiscal[.]online, consultar-rfc[.]online, facturmx[.]info), many of them containing strings such as “mx”, “rcf” and “factur” in their domain names, prior to the downloads of files with the unique URI pattern identified during the aforementioned threat hunting session.

The reference to “rfc” is likely a reference to the Registro Federal de Contribuyentes, a unique registration number issued by Mexico’s tax collection agency, Servicio de Administración Tributaria (SAT). These domains were observed as being 100% rare for the environment and were connected to a few minutes prior to connections to CyberCartel endpoints. Most of the endpoints were newly registered, with creation dates starting from only a few months earlier in the first half of 2023. Interestingly, some of these domains were very similar to legitimate government websites, likely a tactic employed by threat actors to convince users to trust the domains and to bypass security measures.

Figure 2: Screenshot from similarweb[.]com showing the degree of affinity between malicious domains situacionfiscal[.]online and facturmx[.]info and the legitimate Mexican government hostname sat[.]gob[.]mx
Figure 3: Screenshot of the likely source infection website facturmx[.]info taken when visited in a sandbox environment

In other customer networks, connections to mail clients were observed, as well as connections to win-rar[.]com, suggesting an interaction with a compressed file. Connections to legitimate government websites were also detected around the same time in some accounts. Shortly after, the infected devices were detected connecting to 100% rare IP addresses over the HTTP protocol using WebDAV user agents such as Microsoft-WebDAV-MiniRedir/10.0.X and DavCInt. Web Distributed Authoring and Versioning, in its full form, is a legitimate extension to the HTTP protocol that allows users to remotely share, copy, move and edit files hosted on a web server. Both CyberCartel and Fenix botnet reportedly abuse this protocol to retrieve the initial payload via a shortcut link. The use (or abuse) of this protocol allows attackers to evade blocklists and streamline payload distribution. In cases investigated by Darktrace, the use of this protocol was not always considered unusual for the breach device, indicating it also was commonly used for its legitimate purposes.

HTTP methods observed included PROPFIND, GET, and OPTIONS, where a higher proportion of PROPFIND requests were observed. PROPFIND is an HTTP method related to the use of WebDAV that retrieves properties in an exactly defined, machine-readable, XML document (GET responses do not have a define format). Properties are pieces of data that describe the state of a resource, i.e., data about data [7]. They are used in distributed authoring environments to provide for efficient discovery and management of resources.  

Figure 4: Device event log showing a connection to facturmx[.]info followed by a WebDAV connection to the 100% rare IP 172.86.68[.]104

In a number of cases, connections to compromised endpoints were followed by the download of one or more executable files with names following the regex pattern /(yes|4496|[A-Za-z]{8})/(((4496|4545)[A-Za-z]{24})|Herramienta_de_Seguridad_SII).(exe|jse), for example 4496UCJlcqwxvkpXKguWNqNWDivM.exe. PROPFIND and GET HTTP requests for dynamic-link library (DLL) files such as urlmon.dll and netutils.dll were also detected. These are legitimate Windows files that are essential to handle network and internet-related tasks in Windows. Irrespective of whether they had malicious or legitimate signatures, Darktrace DETECT was able to recognize that the download of these files was suspicious with rare external endpoints not previously observed on the respective customer networks.

Figure 5: Advanced Search results showing some of the HTTP requests made by the breach device to a CyberCartel endpoint via PROPFIND, GET, or OPTIONS methods for executable and DLL files

Following Darktrace DETECT’s model breaches, these HTTP connections were investigated by Cyber AI Analyst™. AI Analyst provided a summary and further technical details of these connections, as shown in figure 6.

Figure 6: Cyber AI Analyst incident showing a summary of the event, as well as technical details. The AI investigation process is also detailed

AI Analyst searched for all HTTP connections made by the breach device and found more than 2,500 requests to more than a hundred endpoints for one given device. It then looked for the user agents responsible for these connections and found 15 possible software agents responsible for the HTTP requests, and from these identified a single suspicious software agent, Microsoft-WebDAV-Min-Redir. As mentioned previously, this is a legitimate software, but its use by the breach device was considered unusual by Darktrace’s machine learning technology. By performing analysis on thousands of connections to hundreds of endpoints at machine speed, AI Analyst is able to perform the heavy lifting on behalf of human security teams and then collate its findings in a single summary pane, giving end-users the information needed to assess a given activity and quickly start remediation as needed. This allows security teams and administrators to save precious time and provides unparalleled visibility over any potentially malicious activity on their network.

Following the successful identification of CyberCartel activity by DETECT, Darktrace RESPOND™ is then able to contain suspicious behavior, such as by restricting outgoing traffic or enforcing normal patterns of life on affected devices. This would allow customer security teams extra time to analyze potentially malicious behavior, while leaving the rest of the network free to perform business critical operations. Unfortunately, in the cases of CyberCartel compromises detected by Darktrace, RESPOND was not enabled in autonomous response mode meaning preventative actions had to be applied manually by the customer’s security team after the fact.

Figure 7. Device event log showing connections to 100% rare CyberCartel endpoint 172.86.68[.]194 and subsequent suggested RESPOND actions.

Conclusion

Threat actors targeting high-value entities such as government offices and banks is unfortunately all too commonplace.  In the case of Cyber Cartel, governmental organizations and entities, as well as multiple newspapers in the Latin America, have cautioned users against these malicious campaigns, which have occurred over the past few years [8] [9]. However, attackers continuously update their toolsets and infrastructure, quickly rendering these warnings and known-bad security precautions obsolete. In the case of CyberCartel, the abuse of the legitimate WebDAV protocol to retrieve the initial payload is just one example of this. This method of distribution has also been leveraged by in Bumblebee malware loader’s latest campaign [10]. The abuse of the legitimate WebDAV protocol to retrieve the initial CyberCartel payload outlined in this case is one example among many of threat actors adopting new distribution methods used by others to further their ends.

As threat actors continue to search for new ways of remaining undetected, notably by incorporating legitimate processes into their attack flow and utilizing non-exclusive compromised infrastructure, it is more important than ever to have an understanding of normal network operation in order to detect anomalies that are indicative of an ongoing compromise. Darktrace’s suite of products, including DETECT+RESPOND, is well placed to do just that, with machine-speed analysis, detection, and response helping security teams and administrators keep their digital environments safe from malicious actors.

Credit to: Nahisha Nobregas, SOC Analyst

References

[1] https://darktrace.com/blog/darktrace-half-year-threat-report

[2] https://www.metabaseq.com/fenix-botnet/

[3] https://perception-point.io/blog/manipulated-caiman-the-sophisticated-snare-of-mexicos-banking-predators-technical-edition/

[4] https://www.virustotal.com/gui/ip-address/104.156.149.33/community

[5] https://silent4business.com/tendencias/1

[6] https://www.metabaseq.com/cybercartel/

[7] http://www.webdav.org/specs/rfc2518.html#rfc.section.4.1

[8] https://www.csirt.gob.cl/alertas/8ffr23-01415-01/

[9] https://www.gob.mx/sat/acciones-y-programas/sitios-web-falsos

[10] https://www.bleepingcomputer.com/news/security/bumblebee-malware-returns-in-new-attacks-abusing-webdav-folders/

Appendices  

Darktrace DETECT Model Detections

AI Analyst Incidents:

• Possible HTTP Command and Control

• Suspicious File Download

Model Detections:

• Anomalous Connection / New User Agent to IP Without Hostname

• Device / New User Agent and New IP

• Anomalous File / EXE from Rare External Location

• Multiple EXE from Rare External Locations

• Anomalous File / Script from Rare External Location

List of IoCs

IoC - Type - Description + Confidence

f84bb51de50f19ec803b484311053294fbb3b523 - SHA1 hash - Likely CyberCartel Payload IoCs

4eb564b84aac7a5a898af59ee27b1cb00c99a53d - SHA1 hash - Likely CyberCartel payload

8806639a781d0f63549711d3af0f937ffc87585c - SHA1 hash - Likely CyberCartel payload

9d58441d9d31b5c4011b99482afa210b030ecac4 - SHA1 hash - Possible CyberCartel payload

37da048533548c0ad87881e120b8cf2a77528413 - SHA1 hash - Likely CyberCartel payload

2415fcefaf86a83f1174fa50444be7ea830bb4d1 - SHA1 hash - Likely CyberCartel payload

15a94c7e9b356d0ff3bcee0f0ad885b6cf9c1bb7 - SHA1 hash - Likely CyberCartel payload

cdc5da48fca92329927d9dccf3ed513dd28956af - SHA1 hash - Possible CyberCartel payload

693b869bc9ba78d4f8d415eb7016c566ead839f3 - SHA1 hash - Likely CyberCartel payload

04ce764723eaa75e4ee36b3d5cba77a105383dc5 - SHA1 hash - Possible CyberCartel payload

435834167fd5092905ee084038eee54797f4d23e - SHA1 hash - Possible CyberCartel payload

3341b4f46c2f45b87f95168893a7485e35f825fe - SHA1 hash - Likely CyberCartel payload

f6375a1f954f317e16f24c94507d4b04200c63b9 - SHA1 hash - Likely CyberCartel payload

252efff7f54bd19a5c96bbce0bfaeeecadb3752f - SHA1 hash - Likely CyberCartel payload

8080c94e5add2f6ed20e9866a00f67996f0a61ae - SHA1 hash - Likely CyberCartel payload

c5117cedc275c9d403a533617117be7200a2ed77 - SHA1 hash - Possible CyberCartel payload

19dd866abdaf8bc3c518d1c1166fbf279787fc03 - SHA1 hash - Likely CyberCartel payload

548287c0350d6e3d0e5144e20d0f0ce28661f514 - SHA1 hash - Likely CyberCartel payload

f0478e88c8eefc3fd0a8e01eaeb2704a580f88e6 - SHA1 hash - Possible CyberCartel payload

a9809acef61ca173331e41b28d6abddb64c5f192 - SHA1 hash - Likely CyberCartel payload

be96ec94f8f143127962d7bf4131c228474cd6ac - SHA1 hash -Likely CyberCartel payload

44ef336395c41bf0cecae8b43be59170bed6759d - SHA1 hash - Possible CyberCartel payload

facturmx[.]info - Hostname - Likely CyberCartel infection source

consultar-rfc[.]online - Hostname - Possible CyberCartel infection source

srlxlpdfmxntetflx[.]com - Hostname - Likely CyberCartel infection source

facturmx[.]online - Hostname - Possible CyberCartel infection source

rfcconhomoclave[.]mx - Hostname - Possible CyberCartel infection source

situacionfiscal[.]online - Hostname - Likely CyberCartel infection source

descargafactura[.]club - Hostname - Likely CyberCartel infection source

104.156.149[.]33 - IP - Likely CyberCartel C2 endpoint

172.86.68[.]194 - IP - Likely CyberCartel C2 endpoint

139.162.73[.]58 - IP - Likely CyberCartel C2 endpoint

172.105.24[.]190 - IP - Possible CyberCartel C2 endpoint

MITRE ATT&CK Mapping

Tactic - Technique

Command and Control - Ingress Tool Transfer (T1105)

Command and Control - Web Protocols (T1071.001)

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Alexandra Sentenac
Cyber Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

Network

/

February 19, 2025

Darktrace Releases Annual 2024 Threat Insights

Default blog imageDefault blog image

Introduction: Darktrace’s threat research

Defenders must understand the threat landscape in order to protect against it. They can do that with threat intelligence.

Darktrace approaches threat intelligence with a unique perspective. Unlike traditional security vendors that rely on established patterns from past incidents, it uses a strategy that is rooted in the belief that identifying behavioral anomalies is crucial for identifying both known and novel threats.

For Darktrace analysts and researchers, the incidents detected by the AI solution mark the beginning of a deeper investigation, aiming to connect mitigated threats to wider trends from across the threat landscape. Through hindsight analysis, the Darktrace Threat Research team has highlighted numerous threats, including zero-day, n-day, and other novel attacks, showcasing their evolving nature and Darktrace’s ability to identify them.

In 2024, the Threat Research team observed major trends around vulnerabilities in internet-facing systems, new and re-emerging ransomware strains, and sophisticated email attacks. Read on to discover some of our key insights into the current cybersecurity threat landscape.

Multiple campaigns target vulnerabilities in internet-facing systems

It is increasingly common for threat actors to identify and exploit newly discovered vulnerabilities in widely used services and applications, and in some cases, these vulnerability exploitations occur within hours of disclosure.

In 2024, the most significant campaigns observed involved the ongoing exploitation of zero-day and n-day vulnerabilities in edge and perimeter network technologies. In fact, in the first half of the year, 40% of all identified campaign activity came from the exploitation of internet-facing devices. Some of the most common exploitations involved Ivanti Connect Secure (CS) and Ivanti Policy Secure (PS) appliances, Palo Alto Network (PAN-OS) firewall devices, and Fortinet appliances.

Darktrace helps security teams identify suspicious behavior quickly, as demonstrated with the critical vulnerability in PAN-OS firewall devices. The vulnerability was publicly disclosed on April 11, 2024, yet with anomaly-based detection, Darktrace’s Threat Research team was able to identify a range of suspicious behavior related to exploitation of this vulnerability, including command-and-control (C2) connectivity, data exfiltration, and brute-forcing activity, as early as March 26.

That means that Darktrace and our Threat Research team detected this Common Vulnerabilities and Exposure (CVE) exploitation 16 days before the vulnerability was disclosed. Addressing critical vulnerabilities quickly massively benefits security, as teams can reduce their effectiveness by slowing malicious operations and forcing attackers to pursue more costly and time-consuming methods.

Persistent ransomware threats continue to evolve

The continued adoption of the Ransomware-as-a-Service (RaaS) model provides even less experienced threat actors with the tools needed to carry out disruptive attacks, significantly lowering the barrier to entry.

The Threat Research team tracked both novel and re-emerging strains of ransomware across the customer fleet, including Akira, LockBit, and Lynx. Within these ransomware attempts and incidents, there were notable trends in attackers’ techniques: using phishing emails as an attack vector, exploiting legitimate tools to mask C2 communication, and exfiltrating data to cloud storage services.

Read the Annual 2024 Threat Report for the complete list of prominent ransomware actors and their commonly used techniques.

Onslaught of email threats continues

With a majority of attacks originating from email, it is crucial that organizations secure the inboxes and beyond.

Between December 21, 2023, and December 18, 2024, Darktrace / EMAIL detected over 30.4 million phishing emails across the fleet. Of these, 70% successfully bypassed Domain-based Message Authentication, Reporting, and Conformance (DMARC) verification checks and 55% passed through all other existing layers of customer email security.

The abuse of legitimate services and senders continued to be a significant method for threat actors throughout 2024. By leveraging trusted platforms and domains, malicious actors can bypass traditional security measures and increase the likelihood of their phishing attempts being successful.

This past year, there was a substantial use of legitimately authenticated senders and previously established domains, with 96% of phishing emails detected by Darktrace / EMAIL utilizing existing domains rather than registering new ones.

These are not the only types of email attacks we observed. Darktrace detected over 2.7 million emails with multistage payloads.

While most traditional cybersecurity solutions struggle to cover multiple vectors and recognize each stage of complex attacks as part of wider malicious activity, Darktrace can detect and respond across email, identities, network, and cloud.

Conclusion

The Darktrace Threat Research team continues to monitor the ever-evolving threat landscape. Major patterns over the last year have revealed the importance of fast-acting, anomaly-based detection like Darktrace provides.

For example, response speed is essential when campaigns target vulnerabilities in internet-facing systems, and these vulnerabilities can be exploited by attackers within hours of their disclosure if not even before that.

Similarly, anomaly-based detection can identify hard to find threats like ransomware attacks that increasingly use living-off-the-land techniques and legitimate tools to hide malicious activity. A similar pattern can be found in the realm of email security, where attacks are also getting harder to spot, especially as they frequently exploit trusted senders, use redirects via legitimate services, and craft attacks that bypass DMARC and other layers of email security.

As attacks appear with greater complexity, speed, and camouflage, defenders must have timely detection and containment capabilities to handle all emerging threats. These hard-to-spot attacks can be identified and stopped by Darktrace.

Download the full report

Discover the latest threat landscape trends and recommendations from the Darktrace Threat Research team.

Continue reading
About the author
The Darktrace Threat Research Team

Blog

/

OT

/

February 18, 2025

Unifying IT & OT With AI-Led Investigations for Industrial Security

Default blog imageDefault blog image

As industrial environments modernize, IT and OT networks are converging to improve efficiency, but this connectivity also creates new attack paths. Previously isolated OT systems are now linked to IT and cloud assets, making them more accessible to attackers.

While organizations have traditionally relied on air gaps, firewalls, data diodes, and access controls to separate IT and OT, these measures alone aren’t enough. Threat actors often infiltrate IT/Enterprise networks first then exploit segmentation, compromising credentials, or shared IT/OT systems to move laterally, escalate privileges, and ultimately enter the OT network.

To defend against these threats, organizations must first ensure they have complete visibility across IT and OT environments.

Visibility: The first piece of the puzzle

Visibility is the foundation of effective industrial cybersecurity, but it’s only the first step. Without visibility across both IT and OT, security teams risk missing key alerts that indicate a threat targeting OT at their earliest stages.

For Attacks targeting OT, early stage exploits often originate in IT environments, adversaries perform internal reconnaissance among other tactics and procedures but then laterally move into OT first affecting IT devices, servers and workstations within the OT network. If visibility is limited, these threats go undetected. To stay ahead of attackers, organizations need full-spectrum visibility that connects IT and OT security, ensuring no early warning signs are missed.

However, visibility alone isn’t enough. More visibility also means more alerts, this doesn’t just make it harder to separate real threats from routine activity, but bogs down analysts who have to investigate all these alerts to determine their criticality.

Investigations: The real bottleneck

While visibility is essential, it also introduces a new challenge: Alert fatigue. Without the right tools, analysts are often occupied investigating alerts with little to no context, forcing them to manually piece together information and determine if an attack is unfolding. This slows response times and increases the risk of missing critical threats.

Figure 1: Example ICS attack scenario

With siloed visibility across IT and OT each of these events shown above would be individually alerted by a detection engine with little to no context nor correlation. Thus, an analyst would have to try to piece together these events manually. Traditional security tools struggle to keep pace with the sophistication of these threats, resulting in an alarming statistic: less than 10% of alerts are thoroughly vetted, leaving organizations vulnerable to undetected breaches. As a result, incidents inevitably follow.

Darktrace’s Cyber AI Analyst uses AI-led investigations to improve workflows for analysts by automatically correlating alerts wherever they occur across both IT and OT. The multi-layered AI engine identifies high-priority incidents, and provides analysts with clear, actionable insights, reducing noise and highlighting meaningful threats. The AI significantly alleviates workloads, enabling teams to respond faster and more effectively before an attack escalates.

Overcoming organizational challenges across IT and OT

Beyond technical challenges like visibility and alert management, organizational dynamics further complicate IT-OT security efforts. Fundamental differences in priorities, workflows, and risk perspectives create challenges that can lead to misalignment between teams:

Non-transferable practices: IT professionals might assume that cybersecurity practices from IT environments can be directly applied to OT environments. This can lead to issues, as OT systems and workflows may not handle IT security processes as expected. It's crucial to recognize and respect the unique requirements and constraints of OT environments.

Segmented responsibilities: IT and OT teams often operate under separate organizational structures, each with distinct priorities, goals, and workflows. While IT focuses on data security, network integrity, and enterprise applications, OT prioritizes uptime, reliability, and physical processes.

Different risk perspectives: While IT teams focus on preventing cyber threats and regulatory violations, OT teams prioritize uptime and operational reliability making them drawn towards asset inventory tools that provide no threat detection capability.

Result: A combination of disparate and ineffective tools and misaligned teams can make any progress toward risk reduction at an organization seem impossible. The right tools should be able to both free up time for collaboration and prompt better communication between IT and OT teams where it is needed. However, different size operations structure their IT and OT teams differently which impacts the priorities for each team.

In real-world scenarios, small IT teams struggle to manage security across both IT and OT, while larger organizations with OT security teams face alert fatigue and numerous false positives slowing down investigations and hindering effective communication with the IT security teams.

By unifying visibility and investigations, Darktrace / OT helps organizations of all sizes detect threats earlier, streamline workflows, and enhance security across both IT and OT environments. The following examples illustrate how AI-driven investigations can transform security operations, improving detection, investigation, and response.

Before and after AI-led investigation

Before: Small manufacturing company

At a small manufacturing company, a 1-3 person IT team juggles everything from email security to network troubleshooting. An analyst might see unusual traffic through the firewall:

  • Unusual repeated outbound traffic from an IP within their OT network destined to an unidentifiable external IP.

With no dedicated OT security tools and limited visibility into the industrial network, they don’t know what the internal device in question is, if it is beaconing to a malicious external IP, and what it may be doing to other devices within the OT network. Without a centralized dashboard, they must manually check logs, ask operators about changes, and hunt for anomalies across different systems.

After a day of investigation, they concluded the traffic was not to be expected activity. They stop production within their smaller OT network, update their firewall rules and factory reset all OT devices and systems within the blast radius of the IP device in question.

After: Faster, automated response with Cyber AI Analyst

With Darktrace / OT and Cyber AI Analyst, the IT team moves from reactive, manual investigations to proactive, automated threat detection:

  • Cyber AI Analyst connects alerts across their IT and OT infrastructure temporally mapping them to attack frameworks and provides contextual analysis of how alerts are linked, revealing in real time attackers attempting lateral movement from IT to OT.
  • A human-readable incident report explains the full scope of the incident, eliminating hours of manual investigation.
  • The team is faster to triage as they are led directly to prioritized high criticality alerts, now capable of responding immediately instead of wasting valuable time hunting for answers.

By reducing noise, providing context, and automating investigations, Cyber AI Analyst transforms OT security, enabling small IT teams to detect, understand, and respond to threats—without deep OT cybersecurity expertise.

Before: Large critical infrastructure organization

In large critical infrastructure operations, OT and IT teams work in separate silos. The OT security team needs to quickly assess and prioritize alerts, but their system floods them with notifications:

  • Multiple new device connected to the ICS network alerts
  • Multiple failed logins to HMI detected
  • Multiple Unusual Modbus/TCP commands detected
  • Repeated outbound OT traffic to IT destinations

At first glance, these alerts seem important, but without context, it’s unclear whether they indicate a routine error, a misconfiguration, or an active cyber-attack. They might ask:

  • Are the failed logins just a mistake, or a brute-force attempt?
  • Is the outbound traffic part of a scheduled update, or data exfiltration?

Without correlation across events, the engineer must manually investigate each one—checking logs, cross-referencing network activity, and contacting operators—wasting valuable time. Meanwhile, if it’s a coordinated attack, the adversary may already be disrupting operations.

After: A new workflow with Cyber AI Analyst

With Cyber AI Analyst, the OT security team gets clear, automated correlation of security events, making investigations faster and more efficient:

  • Automated correlation of OT threats: Instead of isolated alerts, Cyber AI Analyst stitches together related events, providing a single, high-confidence incident report that highlights key details.
  • Faster time to meaning: The system connects anomalous behaviors (e.g., failed logins, unusual traffic from an HMI, and unauthorized PLC modifications) into a cohesive narrative, eliminating hours of manual log analysis.
  • Prioritized and actionable alerts: OT security receives clear, ranked incidents, immediately highlighting what matters most.
  • Rapid threat understanding: Security teams know within minutes whether an event is a misconfiguration or a cyber-attack, allowing for faster containment.

With Cyber AI Analyst, large organizations cut through alert noise, accelerate investigations, and detect threats faster—without disrupting OT operations.

An AI-led approach to industrial cybersecurity

Security vendors with a primary focus on IT may lack insight into OT threats. Even OT-focused vendors have limited visibility into IT device exploitation within OT networks, leading to failed ability to detect early indicators of compromise. A comprehensive solution must account for the unique characteristics of various OT environments.

In a world where industrial security is no longer just about protecting OT but securing the entire digital-physical ecosystem as it interacts with the OT network, Darktrace / OT is an AI-driven solution that unifies visibility across IT, IoT and OT, Cloud into one cohesive defense strategy.

Whether an attack originates from an external breach, an insider threat, a supply chain compromise, in the Cloud, OT, or IT domains Cyber AI Analyst ensures that security teams see the full picture - before disruption occurs.

Learn more about Darktrace / OT 

  • Unify IT and OT security under a single platform, ensuring seamless communication and protection for all interconnected devices.
  • Maintain uptime with AI-driven threat containment, stopping attacks without disrupting production.
  • Mitigate risks with or without patches, leveraging MITRE mitigations to reduce attack opportunities.

Download the solution brief to see how Darktrace secures critical infrastructure.

Continue reading
About the author
Daniel Simonds
Director of Operational Technology
Your data. Our AI.
Elevate your network security with Darktrace AI