Blog
/

Inside the SOC

/
March 14, 2023

Defending Against Crypto Thieves with DETECT + RESPOND

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
14
Mar 2023
Cyber criminals steal from crypto-currency platforms. Learn how Darktrace uncovered Lapalas Clipper activity & defended against cryptocurrency thieves.

Between June 2021 and June 2022, crypto-currency platforms around the world lost an estimated 44 billion USD to cyber criminals, whose modus operandi range from stealing passwords and account recovery phrases, to cryptojacking and directly targeting crypto-currency transactions. 

There has been a recent rise in cases of cyber criminals’ using information stealer malware to gather and exfiltrate sensitive crypto-currency wallet details, ultimately leading to the theft of significant sums of digital currency. Having an autonomous decision maker able to detect and respond to potential compromises is crucial to safeguard crypto wallets and transactions against would-be attackers.

In late 2022, Darktrace observed several threat actors employing a novel attack method to target crypto-currency users across its customer base, specifically the latest version of the Laplas Clipper malware. Using Self-Learning AI, Darktrace DETECT/Network™ and Darktrace RESPOND/Network™ were able to uncover and mitigate Laplas Clipper activity and intervene to prevent the theft of large sums of digital currency.

Laplas Clipper Background

Laplas Clipper is a variant of information stealing malware which operates by diverting crypto-currency transactions from victims’ crypto wallets into the wallets of threat actors [1]. Laplas Clipper is a Malware-as-a-Service (MaaS) offering available for purchase and use by a variety of threat actors. It has been observed in the wild since October 2022, when 180 samples were identified and linked with another malware strain, namely SmokeLoader [2]. This loader has itself been observed since at least 2011 and acts as a delivery mechanism for popular malware strains [3]. 

SmokeLoader is typically distributed via malicious attachments sent in spam emails or targeted phishing campaigns but can also be downloaded directly by users from file hosting pages or spoofed websites. SmokeLoader is known to specifically deliver Laplas Clipper onto compromised devices via a BatLoader script downloaded as a Microsoft Word document or a PDF file attached to a phishing email. These examples of social engineering are relatively low effort methods intended to convince users to download the malware, which subsequently injects malicious code into the explorer.exe process and downloads Laplas Clipper.

Laplas Clipper activity observed across Darktrace’s customer base generally began with SmokeLoader making HTTP GET requests to Laplas Clipper command and control (C2) infrastructure. Once downloaded, the clipper loads a ‘build[.]exe’ module and begins monitoring the victim’s clipboard for crypto-currency wallet addresses. If a wallet address is identified, the infected device connects to a server associated with Laplas Clipper and downloads wallet addresses belonging to the threat actor. The actor’s addresses are typically spoofed to appear similar to those they replace in order to evade detection. The malware continues to update clipboard activity and replaces the user’s wallet addresses with a spoofed address each time one is copied for a for crypto-currency transactions.

Darktrace Coverage of Laplas Clipper and its Delivery Methods 

In October and November 2022, Darktrace observed a significant increase in suspicious activity associated with Laplas Clipper across several customer networks. The activity consisted largely of:  

  1. User devices connecting to a suspicious endpoint.  
  2. User devices making HTTP GET requests to an endpoint associated with the SmokeLoader loader malware, which was installed on the user’s device.
  3. User devices making HTTP connections to the Laplas Clipper download server “clipper[.]guru”, from which it downloads spoofed wallet addresses to divert crypto-currency payments. 

In one particular instance, a compromised device was observed connecting to endpoints associated with SmokeLoader shortly before connecting to a Laplas Clipper download server. In other instances, devices were detected connecting to other anomalous endpoints including the domains shonalanital[.]com, transfer[.]sh, and pc-world[.]uk, which appears to be mimicking the legitimate endpoint thepcworld[.]com. 

Additionally, some compromised devices were observed attempting to connect malicious IP addresses including 193.169.255[.]78 and 185.215.113[.]23, which are associated with the RedLine stealer malware. Additionally, Darktrace observed connections to the IP addresses 195.178.120[.]154 and 195.178.120[.]154, which are associated with SmokeLoader, and 5.61.62[.]241, which open-source intelligence has associated with Cobalt Strike. 

Figure 1: Beacon to Young Endpoint model breach demonstrating Darktrace’s ability to detect external connections that are considered extremely rare for the network.
Figure 2: The event log of an infected device attempting to connect to IP addresses associated with the RedLine stealer malware, and the actions RESPOND took to block these attempts.

The following DETECT/Network models breached in response to these connections:

  • Compromise / Beacon to Young Endpoint 
  • Compromise / Slow Beaconing Activity to External Rare 
  • Compromise / Beacon for 4 Days
  • Compromise / Beaconing Activity to External Rare
  • Compromise / Sustained TCP Beaconing Activity to Rare Endpoint 
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoints 
  • Compromise / Large Number of Suspicious Failed Connections 
  • Compromise / HTTP Beaconing to Rare Destination 
  • Compromise / Post and Beacon to Rare External 
  • Anomalous Connection / Callback on Web Facing Device 

DETECT/Network is able to identify such activity as its models operate based on a device’s usual pattern of behavior, rather than a static list of indicators of compromise (IOCs). As such, Darktrace can quickly identify compromised devices that deviate for their expected pattern of behavior by connecting to newly created malicious endpoints or C2 infrastructure, thereby triggering an alert.

In one example, RESPOND/Network autonomously intercepted a compromised device attempting to connect to the Laplas Clipper C2 server, preventing it from downloading SmokeLoader and subsequently, Laplas Clipper itself.

Figure 3: The event log of an infected device attempting to connect to the Laplas Clipper download server, and the actions RESPOND/Network took to block these attempts.

In another example, DETECT/Network observed an infected device attempting to perform numerous DNS Requests to a crypto-currency mining pool associated with the Monero digital currency.  

This activity caused the following DETECT/Network models to breach:

  • Compromise / Monero Mining
  • Compromise / High Priority Crypto Currency Mining 

RESPOND/Network quickly intervened, enforcing a previously established pattern of life on the device, ensuring it could not perform any unexpected activity, and blocking the connections to the endpoint in question for an hour. These actions carried out by Darktrace’s autonomous response technology prevented the infected device from carrying out crypto-mining activity, and ensured the threat actor could not perform any additional malicious activity.

Figure 4. The event log of an infected devices showing DNS requests to the Monero crypto-mining pool, and the actions taken to block them by RESPOND/Network.

Finally, in instances when RESPOND/Network was not activated, external connections to the Laplas Clipper C2 server were nevertheless monitored by DETECT/Network, and the customer’s security team were notified of the incident.

Conclusion 

The rise of information stealing malware variants such as Laplas Clipper highlights the importance of crypto-currency and crypto-mining in the malware ecosystem and more broadly as a significant cyber security concern. Crypto-mining is often discounted as background noise for security teams or compliance issues that can be left untriaged; however, malware strains like Laplas Clipper demonstrate the real security risks posed to digital estates from threat actors focused on crypto-currency. 

Leveraging its Self-Learning AI, DETECT/Network and RESPOND/Network are able to work in tandem to quickly identify connections to suspicious endpoints and block them before any malicious software can be downloaded, safeguarding customers.

Appendices

List of IOCs 

a720efe2b3ef7735efd77de698a5576b36068d07 - SHA1 Filehash - Laplas Malware Download

conhost.exe - URI - Laplas Malware Download

185.223.93.133 - IP Address - Laplas C2 Endpoint

185.223.93.251 - IP Address - Laplas C2 Endpoint

45.159.189.115 - IP Address - Laplas C2 Endpoint

79.137.204.208 - IP Address - Laplas C2 Endpoint

5.61.62.241 - IP Address - Laplas C2 Endpoint

clipper.guru - URI - Laplas C2 URI

/bot/online?guid= - URI - Laplas C2 URI

/bot/regex?key= - URI - Laplas C2 URI

/bot/get?address - URI - Laplas C2 URI

Mitre Attack and Mapping 

Initial Access:

T1189 – Drive By Compromise 

T1566/002 - Spearphishing

Resource Development:

T1588 / 001 - Malware

Ingress Tool Transfer:

T1105 – Ingress Tool Transfer

Command and Control:

T1071/001 – Web Protocols 

T1071 – Application Layer Protocol

T1008 – Fallback Channels

T1104 – Multi-Stage Channels

T1571 – Non-Standard Port

T1102/003 – One-Way Communication

T1573 – Encrypted Channel

Persistence:

T1176 – Browser Extensions

Collection:

T1185 – Man in the Browser

Exfiltration:

T1041 – Exfiltration over C2 Channel

References

[1] https://blog.cyble.com/2022/11/02/new-laplas-clipper-distributed-by-smokeloader/ 

[2] https://thehackernews.com/2022/11/new-laplas-clipper-malware-targeting.html

[3] https://attack.mitre.org/software/S0226/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Anna Gilbertson
Cyber Security Analyst
Hanah Darley
Director of Threat Research
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

November 28, 2024

/

Cloud

Cloud security: addressing common CISO challenges with advanced solutions

Default blog imageDefault blog image

Cloud adoption is a cornerstone of modern business with its unmatched potential for scalability, cost efficiency, flexibility, and net-zero targets around sustainability. However, as organizations migrate more workloads, applications, and sensitive data to the cloud it introduces more complex challenges for CISO’s. Let’s dive into the most pressing issues keeping them up at night—and how Darktrace / CLOUD provides a solution for each.

1. Misconfigurations: The Silent Saboteur

Misconfigurations remain the leading cause of cloud-based data breaches. In 2023 alone over 80%  of data breaches involved data stored in the cloud.1  Think open storage buckets or overly permissive permissions; seemingly minor errors that are easily missed and can snowball into major disasters. The fallout of breaches can be costly—both financially and reputationally.

How Darktrace / CLOUD Helps:

Darktrace / CLOUD continuously monitors your cloud asset configurations, learning your environment and using these insights to flag potential misconfigurations. New scans are triggered when changes take place, then grouped and prioritised intelligently, giving you an evolving and prioritised view of vulnerabilities, best practice and mitigation strategies.

2. Hybrid Environments: The Migration Maze

Many organizations are migrating to the cloud, but hybrid setups (where workloads span both on-premises and cloud environments) create unique challenges and visibility gaps which significantly increase complexity. More traditional and most cloud native security tooling struggles to provide adequate monitoring for these setups.

How Darktrace / CLOUD Helps:

Provides the ability to monitor runtime activity for both on-premises and cloud workloads within the same user interface. By leveraging the right AI solution across this diverse data set, we understand the behaviour of your on-premises workloads and how they interact with cloud systems, spotting unusual connectivity or data flow activity during and after the migration process.

This unified visibility enables proactive detection of anomalies, ensures seamless monitoring across hybrid environments, and provides actionable insights to mitigate risks during and after the migration process.

3. Securing Productivity Suites: The Last Mile

Cloud productivity suites like Microsoft 365 (M365) are essential for modern businesses and are often the first step for an organization on a journey to Infrastructure as a Service (IaaS) or Platform as a Service (PaaS) use cases. They also represent a prime target for attackers. Consider a scenario where an attacker gains access to an M365 account, and proceeds to; access sensitive emails, downloading files from SharePoint, and impersonating the user to send phishing emails to internal employees and external partners. Without a system to detect these behaviours, the attack may go unnoticed until significant damage is done.

How Darktrace helps:

Darktrace’s Active AI platform integrates with M365 and establishes an understanding of normal business activity, enabling the detection of abnormalities across its suite including Email, SharePoint and Teams. By identifying subtle deviations in behaviour, such as:

   •    Unusual file accesses

   •    Anomalous login attempts from unexpected locations or devices.

   •    Suspicious email forwarding rules created by compromised accounts.

Darktrace’s Autonomous Response can act precisely to block malicious actions, by disabling compromised accounts and containing threats before they escalate. Precise actions also ensure that critical business operations are maintained even when a response is triggered.  

4. Agent Fatigue: The Visibility Struggle

To secure cloud environments, visibility is critical. If you don’t know what’s there, how can you secure it? Many solutions require agents to be deployed on every server, workload, and endpoint. But managing and deploying agents across sprawling hybrid environments can be both complex and time-consuming when following change controls, and especially as cloud resources scale dynamically.

How Darktrace / CLOUD Helps:

Darktrace reduces or eliminates the need for widespread agent deployment. Its agentless by default, integrating directly with cloud environments and providing instant visibility without the operational headache. Darktrace ensures coverage with minimal friction. By intelligently graphing the relationships between assets and logically grouping your deployed Cloud resources, you are equipped with real-time visibility to quickly understand and protect your environment.

So why Darktrace / CLOUD?

Darktrace’s Self-Learning AI redefines cloud security by adapting to your unique environment, detecting threats as they emerge, and responding in real-time. From spotting misconfigurations to protecting productivity suites and securing hybrid environments. Darktrace / CLOUD simplifies cloud security challenges without adding operational burdens.

From Chaos to Clarity

Cloud security doesn’t have to be a game of endless whack-a-mole. With Darktrace / CLOUD, CISOs can achieve the visibility, control, and proactive protection they need to navigate today’s complex cloud ecosystems confidently.

[1] https://hbr.org/2024/02/why-data-breaches-spiked-in-2023

Continue reading
About the author
Adam Stevens
Director of Product, Cloud Security

Blog

/

November 28, 2024

/

Thought Leadership

Preparing for 2025: Darktrace's top 10 AI and cybersecurity predictions

Default blog imageDefault blog image

Each year, Darktrace's AI and cybersecurity experts reflect on the events of the past 12 months and predict the trends we expect to shape the cybersecurity landscape in the year ahead. In 2024, we predicted that the global elections, fast-moving AI innovations, and increasingly cloud-based IT environments would be key factors shaping the cyber threat landscape.

Looking ahead to 2025, we expect the total addressable market of cybercrime to expand as attackers add more tactics to their toolkits. Threat actors will continue to take advantage of the volatile geopolitical environment and cybersecurity challenges will increasingly move to new frontiers like space. When it comes to AI, we anticipate the innovation in AI agents in 2024 to pave the way for the rise of multi-agent systems in 2025, creating new challenges and opportunities for cybersecurity professionals and attackers alike.

Here are ten trends to watch for in 2025:

The overall Total Addressable Market (TAM) of cybercrime gets bigger

Cybercrime is a global business, and an increasingly lucrative one, scaling through the adoption of AI and cybercrime-as-a-service. Annual revenue from cybercrime is already estimated to be over $8 trillion, which we’ve found is almost 5x greater than the revenue of the Magnificent Seven stocks. There are a few key factors driving this growth.

The ongoing growth of devices and systems means that existing malware families will continue to be successful. As of October 2024, it’s estimated that more than 5.52 billion people (~67%) have access to the internet and sources estimate 18.8 billion connected devices will be online by the end of 2024. The increasing adoption of AI is poised to drive even more interconnected systems as well as new data centers and infrastructure globally.

At the same time, more sophisticated capabilities are available for low-level attackers – we’ve already seen the trickle-down economic benefits of living off the land, edge infrastructure exploitation, and identity-focused exploitation. The availability of Ransomware-as-a-Service (RaaS) and Malware-as-a-Service (MaaS) make more advanced tactics the norm. The subscription income that these groups can generate enables more adversarial innovation, so attacks are getting faster and more effective with even bigger financial ramifications.

While there has also been an increasing trend in the last year of improved cross-border law enforcement, the efficacy of these efforts remains to be seen as cybercriminal gangs are also getting more resilient and professionalized. They are building better back-up systems and infrastructure as well as more multi-national networks and supply chains.

Security teams need to prepare for the rise of AI agents and multi-agent systems

Throughout 2024, we’ve seen major announcements about advancements in AI agents from the likes of OpenAI, Microsoft, Salesforce, and more. In 2025, we’ll see increasing innovation in and adoption of AI agents as well as the emergence of multi-agent systems (or “agent swarms”), where groups of autonomous agents work together to tackle complex tasks.

The rise of AI agents and multi-agent systems will introduce new challenges in cybersecurity, including new attack vectors and vulnerabilities. Security teams need to think about how to protect these systems to prevent data poisoning, prompt injection, or social engineering attacks.

One benefit of multi-agent systems is that agents can autonomously communicate, collaborate, and interact. However without clear and distinct boundaries and explicit permissions, this can also pose a major data privacy risk and avenue for manipulation. These issues cannot be addressed by traditional application testing alone. We must ensure these systems are secure by design, where robust protective mechanisms and data guardrails are built into the foundations.

Threat actors will be the earliest adopters of AI agents and multi-agent systems

We’ve already seen how quickly threat actors have been able to adopt generative AI for tasks like email phishing and reconnaissance. The next frontier for threat actors will be AI agents and multi-agent systems that are specialized in autonomous tasks like surveillance, initial access brokering, privilege escalation, vulnerability exploitation, data summarization for smart exfiltration, and more. Because they have no concern for safe, secure, accurate, and responsible use, adversaries will adopt these systems faster than cyber defenders.

We could also start to see use cases emerge for multi-agent systems in cyber defense – with potential for early use cases in incident response, application testing, and vulnerability discovery. On the whole, security teams will be slower to adopt these systems than adversaries because of the need to put in place proper security guardrails and build trust over time.

There is heightened supply chain risk for Large Language Models (LLMs)

Training LLMs requires a lot of data, and many experts have warned that world is running out of quality data for that training. As a result, there will be an increasing reliance on synthetic data, which can introduce new issues of accuracy and efficacy. Moreover, data supply chain risks will be an Achilles heel for organizations, with the potential interjection of vulnerabilities through the data and machine learning providers that they rely on. Poisoning one data set could have huge trickle-down impacts across many different systems. Data security will be paramount in 2025.

The race to identify software vulnerabilities intensifies

The time it takes for threat actors to exploit newly published CVEs is getting shorter, giving defenders an even smaller window to apply patches and remediations. A 2024 report from Cloudflare found that threat actors quickly weaponized proof of concept exploits in attacks as quickly as 22 minutes after the exploits were made public.

At the same time, 2024 also saw the first reports from researchers across academia and the tech industry using AI for vulnerability discovery in real-world code. With threat actors getting faster at exploiting vulnerabilities, defenders will need to use AI to identify vulnerabilities in their software stack and to help identify and prioritize remediations and patches.

Insider threat risks will force organizations to evolve zero trust strategies

In 2025, an increasingly volatile geopolitical situation and the intensity of the AI race will make insider threats an even bigger risk for businesses, forcing organizations to expand zero-trust strategies. The traditional zero-trust model provides protection from external threats to an organization’s network by requiring continuous verification of the devices and users attempting to access critical business systems, services, and information from multiple sources. However, as we have seen in the more recent Jack Teixeira case, malicious insiders can still do significant damage to an organization within their approved and authenticated boundary.

To circumvent the remaining security gaps in a zero-trust architecture and mitigate increasing risk of insider threats, organizations will need to integrate a behavioral understanding dimension to their zero-trust approaches. The zero-trust best practice of “never trust, always verify” needs to evolve to become “never trust, always verify, and continuously monitor.”

Identity remains an expensive problem for businesses

2024 saw some of the biggest and costliest attacks – all because the attacker had access to compromised credentials. Essentially, they had the key to the front door. Businesses still struggle with identity and access management (IAM), and it’s getting more complex now that we’re in the middle of a massive Software-as-a-Service (SaaS) migration driven by increasing rates of AI and cloud use across businesses.

This challenge is going to be exacerbated in 2025 by a few global and business factors. First, there is an increasing push for digital identities, such as the rollout of the EU Digital Identity Framework that is underway, which could introduce additional attack vectors. As they scale, businesses are turning more and more to centralized identity and access solutions with decentralized infrastructure and relying on SaaS and application-native security.

Increasing vulnerabilities at the edge

During the COVID-19 pandemic, many organizations had to stand-up remote access solutions quickly – in a matter of days or weeks – without the high level of due diligence that they require to be fully secured. In 2025, we expect to see continued fall-out as these quickly spun-up solutions start to present genuine vulnerability to businesses. We’ve already seen this start to play out in 2024 with the mass-exploitation of internet-edge devices like firewalls and VPN gateway products.

By July 2024, Darktrace’s threat research team observed that the most widely exploited edge infrastructure devices were those related to Ivanti Connect Secure, JetBrains TeamCity, FortiClient Enterprise Management Server, and Palo Alto Networks PAN-OS. Across the industry, we’ve already seen many zero days and vulnerabilities exploiting these internet-connected devices, which provide inroads into the network and store/cache credentials and passwords of other users that are highly valuable for threat actors.

Hacking Operational Technology (OT) gets easier

Hacking OT is notoriously complex – causing damage requires an intimate knowledge of the specific systems being targeted and historically was the reserve of nation states. But as OT has become more reliant and integrated with IT systems, attackers have stumbled on ways to cause disruption without having to rely on the sophisticated attack-craft normally associated with nation-state groups. That’s why some of the most disruptive attacks of the last year have come from hacktivist and financially-motivated criminal gangs – such as the hijacking of internet-exposed Programmable Logic Controllers (PLCs) by anti-Israel hacking groups and ransomware attacks resulting in the cancellation of hospital operations.  

In 2025, we expect to see an increase in cyber-physical disruption caused by threat groups motivated by political ideology or financial gain, bringing the OT threat landscape closer in complexity and scale to that of the IT landscape. The sectors most at risk are those with a strong reliance on IoT sensors, including healthcare, transportation, and manufacturing sectors.

Securing space infrastructure and systems becomes a critical imperative

The global space industry is growing at an incredibly fast pace, and 2025 is on track to be another record-breaking year for spaceflight with major missions and test flights planned by NASA, ESA, CNSA as well as the expected launch of the first commercial space station from Vast and programs from Blue Origin, Amazon and more. Research from Analysis Mason suggests that 38,000 additional satellites will be built and launched by 2033 and the global space industry revenue will reach $1.7 trillion by 2032. Space has also been identified as a focus area for the incoming US administration.

In 2025, we expect to see new levels of tension emerge as private and public infrastructure increasingly intersect in space, shining a light on the lack of agreed upon cyber norms and the increasing challenge of protecting complex and remote space systems against modern cyber threats.  Historically focused on securing earth-bound networks and environments, the space industry will face challenges as post-orbit threats rise, with satellites moving up the target list.

The EU’s NIS2 Directive now recognizes the space sector as an essential entity that is subject to its most strict cybersecurity requirements. Will other jurisdictions follow suit? We expect global debates about cyber vulnerabilities in space to come to the forefront as we become more reliant on space-based technology.

Preparing for the future

Whatever 2025 brings, Darktrace is committed to providing robust cybersecurity leadership and solutions to enterprises around the world. Our team of subject matter experts will continue to monitor emerging threat trends, advising both our customers and our product development teams.

And for day-to-day security, our multi-layered AI cybersecurity platform can protect against all types of threats, whether they are known, unknown, entirely novel, or powered by AI. It accomplishes this by learning what is normal for your unique organization, therefore identifying unusual and suspicious behavior at machine speed, regardless of existing rules and signatures. In this way, organizations with Darktrace can be ready for any developments in the cybersecurity threat landscape that the new year may bring.

Discover more about Darktrace's predictions on the AI and cybersecurity landscape for 2025 by joining the upcoming webinar on December 12, 2024 at 10:00am EST/3:00pm GMT. Register here.

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI