Blog
/

Inside the SOC

/
April 26, 2023

Gozi ISFB Malware Detection Insights and Analysis

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
26
Apr 2023
Learn how Darktrace detected the Gozi ISFB malware, a type of banking trojan, with Self-Learning AI. Stay informed about the latest cybersecurity threats.

Mirroring the overall growth of the cybersecurity landscape and the advancement of security tool capabilities, threat actors are continuously forced to keep pace. Today, threat actors are bringing novel malware into the wild, creating new attack vectors, and finding ways to avoid the detection of security tools. 

One notable example of a constantly adapting type of malware can be seen with banking trojans, a type of malware designed to steal confidential information, such as banking credentials, used by attackers for financial gain. Gozi-ISFB is a widespread banking trojan that has previously been referred to as ‘the malware with a thousand faces’ and, as it name might suggest, has been known under various names such as Gozi, Ursnif, Papras and Rovnix to list a few.

Between November 2022 and January 2023, a rise in Gozi-ISFB malware related activity was observed across Darktrace customer environments and was investigated by the Darktrace Threat Research team. Leveraging its Self-Learning AI, Darktrace was able to identify activity related to this banking trojan, regardless of the attack vectors or delivery methods utilized by threat actors.

We have moderate to high confidence that the series of activities observed is associated with Gozi-ISFB malware and high confidence in the indicators of compromise identified which are related to the post-compromise activities from Gozi-ISFB malware. 

Gozi-ISFB Background

The Gozi-ISFB malware was first observed in 2011, stemming from the source code of another family of malware, Gozi v1, which in turn borrowed source code from the Ursnif malware strain.  

Typically, the initial access payloads of Gozi-ISFB would require an endpoint to enable a macro on their device, subsequently allowing a pre-compiled executable file (.exe) to be gathered from an attacker-controlled server, and later executed on the target device.

However, researchers have recently observed Gozi-ISFB actors using additional and more advanced capabilities to gain access to organizations networks. These capabilities range from credential harvest, surveilling user keystrokes, diverting browser traffic from banking websites, remote desktop access, and the use of domain generation algorithms (DGA) to create command-and-control (C2) domains to avoid the detection and blocking of traditional security tools. 

Ultimately, the goal of Gozi-ISFB malware is to gather confidential information from infected devices by connecting to C2 servers and installing additional malware modules on the network. 

Darktrace Coverage of Gozi-ISFB 

Unlike traditional security approaches, Darktrace DETECT/Network™ can identify malicious activity because Darktrace models build an understanding of a device’s usual pattern of behavior, rather than using a static list of indicators of compromise (IoCs) or rules and signatures. As such, Darktrace is able to instantly detect compromised devices that deviate from their expected behavioral patterns, engaging in activity such as unusual SMB connections or connecting to newly created malicious endpoints or C2 infrastructure. In the event that Darktrace detects malicious activity, it would automatically trigger an alert, notifying the customer of an ongoing security concern. 

Regarding the Gozi-ISFB attack process, initial attack vectors commonly include targeted phishing campaigns, where the recipient would receive an email with an attached Microsoft Office document containing macros or a Zip archive file. Darktrace frequently observes malicious emails like this across the customer base and is able to autonomously detect and action them using Darktrace/Email™. In the following cases, the clients who had Darktrace/Email did not have evidence of compromise through their corporate email infrastructure, suggesting devices were likely compromised via the access of personal email accounts. In other cases, the customers did not have Darktrace/Email enabled on their networks.

Upon downloading and opening the malicious attachment included in the phishing email, the payload subsequently downloads an additional .exe or dynamic link library (DLL) onto the device. Following this download, the malware will ultimately begin to collect sensitive data from the infected device, before exfiltrating it to the C2 server associated with Gozi-ISFB. Darktrace was able to demonstrate and detect the retrieval of Gozi-ISFB malware, as well as subsequent malicious communication on multiple customer environments. 

In some attack chains observed, the infected device made SMB connections to the rare external endpoint ’62.173.138[.]28’ via port 445. Darktrace recognized that the device used unusual credentials for this destination endpoint and further identified it performing SMB reads on the share ‘\\62.173.138[.]28\Agenzia’. Darktrace also observed that the device downloaded the executable file ‘entrat.exe’ from this connection as can be seen in Figure 1.

Figure 1: Model breach event log showing an infected device making SMB read actions on the share ‘\\62.173.138[.]28\Agenzia’. Darktrace observed the device downloading the executable file ‘entrat.exe’ from this connection.

Subsequently, the device performed a separate SMB login to the same external endpoint using a credential identical to the device's name. Shortly after, the device performed a SMB directory query from the root share drive for the file path to the same endpoint. 

Figure 2:SMB directory query from the root share drive for the file path to the same endpoint, ’62.173.138[.]28’.

In Gozi-ISFB compromises investigated by the Threat Research team, Darktrace commonly observed model breaches for ‘Multiple HTTP POSTs to Rare Hostname’ and the use of the Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 10.0; Win64; x64)’ user agent. 

Devices were additionally observed making external connections over port 80 (TCP, HTTP) to endpoints associated with Gozi-ISFB. Regarding these connections, C2 communication was observed used configurations of URI path and resource file extension that claimed to be related to images within connections that were actually GET or POST request URIs. This is a commonly used tactic by threat actors to go under the radar and evade the detection of security teams.  

An example of this type of masqueraded URI can be seen below:

In another similar example investigated by the Threat Research team, Darktrace detected similar external connectivity associated with Gozi-ISFB malware. In this case, DETECT identified external connections to two separate hostnames, namely ‘gameindikdowd[.]ru’ and ‘jhgfdlkjhaoiu[.]su’,  both of which have been associated to Gozi-ISFB by OSINT sources. This specific detection included HTTP beaconing connections to endpoint, gameindikdowd[.]ru .

Details observed from this event: 

Destination IP: 134.0.118[.]203

Destination port: 80

ASN: AS197695 Domain names registrar REG.RU, Ltd

User agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 10.0; Win64; x64

The same device later made anomalous HTTP POST requests to a known Gozi-ISFB endpoint, jhgfdlkjhaoiu[.]su. 

Details observed:

Destination port: 80

ASN: AS197695 Domain names registrar REG.RU, Ltd

User agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 10.0; Win64; x64

Figure 3: Packet Capture (PCAP) with the device conducting anomalous HTTP POST requests to a Gozi-ISFB related IOC, ‘jhgfdlkjhaoiu[.]su’.

Conclusions 

With constantly changing attack infrastructure and new methods of exploitation tested and leveraged hour upon hour, it is critical for security teams to employ tools that help them stay ahead of the curve to avoid critical damage from compromise.  

Faced with a notoriously adaptive malware strain like Gozi-ISFB, Darktrace demonstrated its ability to autonomously detect malicious activity based upon more than just known IoCs and attack vectors. Despite the multitude of different attack vectors utilized by threat actors, Darktrace was able to detect Gozi-ISFB activity at various stages of the kill chain using its anomaly-based detection to identify unusual activity or deviations from normal patterns of life. Using its Self-Learning AI, Darktrace successfully identified infected devices and brought them to the immediate attention of customer security teams, ultimately preventing infections from leading to further compromise.  

The Darktrace suite of products, including DETECT/Network, is uniquely placed to offer customers an unrivaled level of network security that can autonomously identify and respond to arising threats against their networks in real time, preventing suspicious activity from leading to damaging network compromises.

Credit to: Paul Jennings, Principal Analyst Consultant and the Threat Research Team

Appendices

List of IOCs

134.0.118[.]203 - IP Address - Gozi-ISFB C2 Endpoint

62.173.138[.]28 - IP Address - Gozi-ISFB  C2 Endpoint

45.130.147[.]89 - IP Address - Gozi-ISFB  C2 Endpoint

94.198.54[.]97 - IP Address - Gozi-ISFB C2 Endpoint

91.241.93[.]111 - IP Address - Gozi-ISFB  C2 Endpoint

89.108.76[.]56 - IP Address - Gozi-ISFB  C2 Endpoint

87.106.18[.]141 - IP Address - Gozi-ISFB  C2 Endpoint

35.205.61[.]67 - IP Address - Gozi-ISFB  C2 Endpoint

91.241.93[.]98 - IP Address - Gozi-ISFB  C2 Endpoint

62.173.147[.]64 - IP Address - Gozi-ISFB C2 Endpoint

146.70.113[.]161 - IP Address - Gozi-ISFB  C2 Endpoint 

iujdhsndjfks[.]ru - Hostname - Gozi-ISFB C2 Hostname

reggy505[.]ru - Hostname - Gozi-ISFB  C2 Hostname

apr[.]intoolkom[.]at - Hostname - Gozi-ISFB  C2 Hostname

jhgfdlkjhaoiu[.]su - Hostname - Gozi-ISFB  C2 Hostname

gameindikdowd[.]ru - Hostname - Gozi-ISFB  Hostname

chnkdgpopupser[.]at - Hostname – Gozi-ISFB C2 Hostname

denterdrigx[.]com - Hostname – Gozi-ISFB C2 Hostname

entrat.exe - Filename – Gozi-ISFB Related Filename

Darktrace Model Coverage

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

Anomalous Connection / Posting HTTP to IP Without Hostname

Anomalous Connection / New User Agent to IP Without Hostname

Compromise / Agent Beacon (Medium Period)

Anomalous File / Application File Read from Rare Endpoint

Device / Suspicious Domain

Mitre Attack and Mapping

Tactic: Application Layer Protocol: Web Protocols

Technique: T1071.001

Tactic: Drive-by Compromise

Technique: T1189

Tactic: Phishing: Spearphishing Link

Technique: T1566.002

Model Detection

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname - T1071.001

Anomalous Connection / Posting HTTP to IP Without Hostname - T1071.001

Anomalous Connection / New User Agent to IP Without Hostname - T1071.001

Compromise / Agent Beacon (Medium Period) - T1071.001

Anomalous File / Application File Read from Rare Endpoint - N/A

Device / Suspicious Domain - T1189, T1566.002

References

https://threatfox.abuse.ch/browse/malware/win.isfb/

https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-216a

https://www.fortinet.com/blog/threat-research/new-variant-of-ursnif-continuously-targeting-italy#:~:text=Ursnif%20(also%20known%20as%20Gozi,Italy%20over%20the%20past%20year

https://medium.com/csis-techblog/chapter-1-from-gozi-to-isfb-the-history-of-a-mythical-malware-family-82e592577fef

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Justin Torres
Cyber Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

November 19, 2024

/
No items found.

Darktrace Leading the Future of Network Detection and Response with Recognition from KuppingerCole

Default blog imageDefault blog image

KuppingerCole has recognized Darktrace as an overall Leader, Product Leader, Market Leader and Innovation Leader in the KuppingerCole Leadership Compass: Network Detection and Response (2024).

With the perimeter all but dissolved, Network Detection and Response (NDR) tools are quickly becoming a critical component of the security stack, as the main tool to span the modern network. NDRs connect on-premises infrastructure to cloud, remote workers, identities, SaaS applications, and IoT/OT – something not available to EDR that requires agents and isolates visibility to individual devices.

KuppingerCole Analysts AG designated Darktrace an ‘Overall Leader’ position because of our continual innovation around user-led security. Self-Learning AI together with automated triage through Cyber AI Analyst and real-time autonomous response actions have been instrumental to security teams in stopping potential threats before they become a breach. With this time saved, Darktrace is leading beyond reactive security to truly harden a network, allowing the team to spend more time in preventive security measures.

Network Detection and Response protects where others fail to reach

NDR solutions operate at the network level, deploying inside or parallel to your network to ingest raw traffic via virtual or physical sensors. This gives them unprecedented potential to identify anomalies and possible breaches in any network - far beyond simple on-prem, into dynamic virtual environments, cloud or hybrid networks, cloud applications, and even remote devices accessing the corporate network via ZTNA or VPN.

Rather than looking at processes level data, NDR can detect the lateral movement of an adversary across multiple assets by analyzing network traffic patterns which endpoint solutions may not be able to identify [1]. In the face of a growing, complex environment, organizations large and small, will benefit from using NDRs either in conjunction, or as the foundation for, their Extended Detection and Response (XDR) for a unified view that improves their overall threat detection, ease of investigation and faster response times.

Today's NDR solutions are expected to include advanced ML and artificial intelligence (AI) algorithms [1]

Traditional IDS & IPS systems are labor intensive, requiring continuous rule creation, outdated signature maintenance, and manual monitoring for false positives or incorrect actions. This is no longer viable against a higher volume and changing landscape, making NDR the natural network tool to level against these evolutions. The role of AI in NDRs is designed to meet this challenge, “to reduce both the labor need for analysis and false positives, as well as add value by improving anomaly detection and overall security posture” .

Celebrating success in leadership and innovation

Darktrace is proud to have been recognized as an NDR “Overall Leader” in KuppingerCole Analyst AG’s Leadership Compass. The report gave further recognition to Darktrace as a ‘Product Leader”, “Innovation Leader” and “Market Leader”.

Maximum scores were received for core product categories, in addition to market presence and financial strength. Particular attention was directed to our innovation. This year has seen several NDR updates via Darktrace’s ActiveAI Security Platform version 6.2 which has enhanced investigation workflows and provided new AI transparency within the toolset.

Positive scores were also received for Darktrace’s deployment ecosystem and surrounding support, minimizing the need for extraneous integrations through a unique platform architecture that connects with over 90 other vendors.

High Scores received in Darktrace’s KuppingerCole Spider Chart across Core NDR capability areas
Figure 1: High Scores received in Darktrace’s KuppingerCole Spider Chart across Core NDR capability areas

Darktrace’s pioneering AI approach sets it apart

Darktrace / NETWORK’s approach is fundamentally different to other NDRs. Continual anomaly-based detection (our Self-Learning AI), understands what is normal across each of your network entities, and then examines deviations from these behaviors rather than needing to apply static rules or ML to adversary techniques. As a result, Darktrace / NETWORK can focus on surfacing the novel threats that cannot be anticipated, whilst our proactive solutions expose gaps that can be exploited and reduce the risk of known threats.    

Across the millions of possible network events that may occur, Darktrace’s Cyber AI Analyst reduces that manual workload for SOC teams by presenting only what is most important in complete collated incidents. This accelerates SOC Level 2 analyses of incidents by 10x2, giving time back, first for any necessary response and then for preventive workflows.

Finally, when incidents begin to escalate, Darktrace can natively (or via third-party) autonomously respond and take precise actions based on a contextual understanding of both the affected assets and incident in question so that threats can be disarmed without impacting wider operations.

Within the KuppingerCole report, several standout strengths were listed:

  • Cyber AI Analyst was celebrated as a core differentiator, enhancing both visibility and investigation into critical network issues and allowing a faster response.
  • Darktrace / NETWORK was singled for its user benefits. Both a clear interface for analysts with advanced filtering and analytical tools, and efficient role-based access control (RBAC) and configuration options for administrators.
  • At the product level, Darktrace was recognized for complete network traffic analysis (NTA) capabilities allowing extensive analysis into components like application use/type, fingerprinting, source/destination communication, in addition to comprehensive protocol support across a range of network device types from IT, OT, IoT and mobiles and detailed MITRE ATT&CK mapping.
  • Finally, at the heart of it, Darktrace’s innovation was highlighted in relation to its intrinsic Self Learning AI, utilizing multiple layers of deep learning, neural networks, LLMs, NLP, Generative AI and more to understand network activity and filter it for what’s critical on an individual customer level.

Going beyond reactive security

Darktrace’s visibility and AI-enabled detection, investigation and response enable security teams to focus on hardening gaps in their network through contextual relevance & priority. Darktrace / NETWORK explicitly gives time back to security teams allowing them to focus on the bigger strategic and governance workflows that sometimes get overlooked. This is enabled through proactive solutions intrinsically connected to our NDR:

  • Darktrace / Proactive Exposure Management, which looks beyond just CVE risks to instead discover, prioritize and validate risks by business impact and how to mobilize against them early, to reduce the number of real threats security teams face.
  • Darktrace / Incident Readiness & Recovery, a solution rather than service-based approach to incident response (IR) that lets teams respond in the best way to each incident and proactively test their familiarity and effectiveness of IR workflows with sophisticated incident simulations involving their own analysts and assets.

Together, these solutions allow Darktrace / NETWORK to go beyond the traditional NDR and shift teams to a more hardened and proactive state.

Putting customers first

Customers continue to sit at the forefront of Darktrace R&D, with their emerging needs and pain points being the direct inspiration for our continued innovation.

This year Darktrace / NETWORK has protected thousands of customers against the latest attacks, from data exfil and destruction, to unapproved privilege escalation and ransomware including strains like Medusa, Qilin and AlphV BlackCat.

In each instance, Darktrace / NETWORK was able to provide a holistic lens of the anomalies present in their traffic, collated those that were important, and either responded or gave teams the ability to take targeted actions against their threats – even when adversaries pivoted. In one example of a Gootloader compromise, Darktrace ensured a SOC went from detection to recovery within 5 days, 92.8% faster than the average containment time of 69 days.

Results like these, focused on user-led security, have secured Darktrace’s position within the latest NDR Leadership Compass.

To find out more about what makes Darktrace / NETWORK special, read the full KuppingerCole report.

References

[1] Osman Celik, KuppingerCole Leadership Compass:Network Detection and Response (2024)

[2] Darktrace's AI Analyst customer fleet data

[3] https://www.ibm.com/reports/data-breach

Continue reading
About the author
Gabriel Few-Wiegratz
Product Marketing Manager

Blog

/

November 1, 2024

/

Inside the SOC

Phishing and Persistence: Darktrace’s Role in Defending Against a Sophisticated Account Takeover

Default blog imageDefault blog image

The exploitation of SaaS platforms

As businesses continue to grow and evolve, the need for sharing ideas through productivity and cloud Software-as-a-Service (SaaS) platforms is becoming increasingly crucial. However, these platforms have also become prime targets for cyber attackers.

Threat actors often exploit these widely-used services to gain unauthorized access, steal sensitive information, and disrupt business operations. The growing reliance on SaaS platforms makes them attractive entry points for cybercriminals, who use sophisticated techniques such as phishing, social engineering, and malware to compromise these systems.

Services like Microsoft 365 are regularly targeted by threat actors looking for an entry point into an organization’s environment to carry out malicious activities. Securing these platforms is crucial to protect business data and ensure operational continuity.

Darktrace / EMAIL detection of the phishing attack

In a recent case, Darktrace observed a customer in the manufacturing sector receiving a phishing email that led to a threat actor logging in and creating an email rule. Threat actors often create email rules to move emails to their inbox, avoiding detection. Additionally, Darktrace detected a spoofed domain registered by the threat actor. Despite already having access to the customer’s SaaS account, the actor seemingly registered this domain to maintain persistence on the network, allowing them to communicate with the spoofed domain and conduct further malicious activity.

Darktrace / EMAIL can help prevent compromises like this one by blocking suspicious emails as soon as they are identified. Darktrace’s AI-driven email detection and response recognizes anomalies that might indicate phishing attempts and applies mitigative actions autonomously to prevent the escalation of an attack.

Unfortunately, in this case, Darktrace was not configured in Autonomous Response mode at the time of the attack, meaning actions had to be manually applied by the customer’s security team. Had it been fully enabled, it would have held the emails, preventing them from reaching the intended recipient and stopping the attack at its inception.

However, Darktrace’s Managed Threat Detection alerted the Security Operations Center (SOC) team to the compromise, enabling them to thoroughly investigate the incident and notify the customer before further damage could occur.

The Managed Threat Detection service continuously monitors customer networks for suspicious activities that may indicate an emerging threat. When such activities are detected, alerts are sent to Darktrace’s expert Cyber Analysts for triage, significantly speeding up the remediation process.

Attack Overview

On May 2, 2024, Darktrace detected a threat actor targeting a customer in the manufacturing sector then an unusual login to their SaaS environment was observed prior to the creation of a new email rule.

Darktrace immediately identified the login as suspicious due to the rarity of the source IP (31.222.254[.]27) and ASN, coupled with the absence of multi-factor authentication (MFA), which was typically required for this account.

The new email rule was intended to mark emails as read and moved to the ‘Conversation History’ folder for inbound emails from a specific domain. The rule was named “….,,,”, likely the attacker attempting to setup their new rule with an unnoteworthy name to ensure it would not be noticed by the account’s legitimate owner. Likewise, by moving emails from a specific domain to ‘Conversation History’, a folder that is rarely used by most users, any phishing emails sent by that domain would remain undetected by the user.

Darktrace’s detection of the unusual SaaS login and subsequent creation of the new email rule “….,,,”.
Figure 1: Darktrace’s detection of the unusual SaaS login and subsequent creation of the new email rule “….,,,”.

The domain in question was identified as being newly registered and an example of a typosquat domain. Typosquatting involves registering new domains with intentional misspelling designed to convince users to visit fake, and often malicious, websites. This technique is often used in phishing campaigns to create a sense of legitimacy and trust and deceive users into providing sensitive information. In this case, the suspicious domain closely resembled several of the customer’s internal domains, indicating an attempt to impersonate the organization’s legitimate internal sites to gain the target’s trust. Furthermore, the creation of this lookalike domain suggests that the attack was highly targeted at this specific customer.

Interestingly, the threat actor registered this spoofed domain despite already having account access. This was likely intended to ensure persistence on the network without having to launch additional phishing attacks. Such use of spoofed domain could allow an attacker to maintain a foothold in their target network and escalate their malicious activities without having to regain access to the account. This persistence can be used for various purposes, including data exfiltration, spreading malware, or launching further attacks.

Following this, Darktrace detected a highly anomalous email being sent to the customer’s account from the same location as the initial unsual SaaS login. Darktrace’s anomaly-based detection is able to identify threats that human security teams and traditional signature-based methods might miss. By analyzing the expected behavior of network users, Darktrace can recognize the subtle deviations from the norm that may indicate malicious activity. Unfortunately, in this instance, without Darktrace’s Autonomous Response capability enabled, the phishing email was able to successfully reach the recipient. While Darktrace / EMAIL did suggest that the email should be held from the recipients inbox, the customer was required to manually approve it.

Despite this, the Darktrace SOC team were still able to support the customer as they were subscribed to the Managed Threat Detection service. Following the detection of the highlight anomalous activity surrounding this compromise, namely the unusual SaaS login followed by a new email rule, an alert was sent to the Darktrace SOC for immediate triage, who then contacted the customer directly urging immediate action.

Conclusion

This case underscores the need to secure SaaS platforms like Microsoft 365 against sophisticated cyber threats. As businesses increasingly rely on these platforms, they become prime targets for attackers seeking unauthorized access and disruption.

Darktrace’s anomaly-based detection and response capabilities are crucial in identifying and mitigating such threats. In this instance, Darktrace detected a phishing email that led to a threat actor logging in and creating a suspicious email rule. The actor also registered a spoofed domain to maintain persistence on the network.

Darktrace / EMAIL, with its AI-driven detection and analysis, can block suspicious emails before they reach the intended recipient, preventing attacks at their inception. Meanwhile, Darktrace’s SOC team promptly investigated the activity and alerted the customer to the compromise, enabling them to take immediate action to remediate the issue and prevent any further damage.

Credit to Vivek Rajan (Cyber Security Analyst) and Ryan Traill (Threat Content Lead).

Appendices

Darktrace Model Detections

  • SaaS / Access / Unusual External Source for SaaS Credential Use
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active
  • SaaS / Resource / Unusual Access to Delegated Resource by Non Owner
  • SaaS / Email Nexus / Unusual Login Location Following Sender Spoof
  • Compliance / Anomalous New Email Rule
  • SaaS / Compromise / Unusual Login and New Email Rule

Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

31.222.254[.]27 – IP -  Suspicious Login Endpoint

MITRE ATT&CK Mapping

Tactic – Technqiue – Sub-technique of (if applicable)

Cloud Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078.004 - T1078

Cloud Service Dashboard – DISCOVERY - T1538

Compromise Accounts - RESOURCE DEVELOPMENT - T1586

Steal Web Session Cookie - CREDENTIAL ACCESS - T1539

Outlook Rules – PERSISTENCE - T1137.005 - T1137

Continue reading
About the author
Vivek Rajan
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI