Blog
/

Inside the SOC

/
April 17, 2024

Sliver C2: How Darktrace Provided a Sliver of Hope in the Face of an Emerging C2 Framework

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
17
Apr 2024
This blog discusses Sliver, a legitimate C2 framework that has recently been utilized by malicious actors as an alternative to Cobalt Strike. Darktrace was able to detect multiple cases of attackers using Sliver C2 in 2023 and 2024.

Offensive Security Tools

As organizations globally seek to for ways to bolster their digital defenses and safeguard their networks against ever-changing cyber threats, security teams are increasingly adopting offensive security tools to simulate cyber-attacks and assess the security posture of their networks. These legitimate tools, however, can sometimes be exploited by real threat actors and used as genuine actor vectors.

What is Sliver C2?

Sliver C2 is a legitimate open-source command-and-control (C2) framework that was released in 2020 by the security organization Bishop Fox. Silver C2 was originally intended for security teams and penetration testers to perform security tests on their digital environments [1] [2] [5]. In recent years, however, the Sliver C2 framework has become a popular alternative to Cobalt Strike and Metasploit for many attackers and Advanced Persistence Threat (APT) groups who adopt this C2 framework for unsolicited and ill-intentioned activities.

The use of Sliver C2 has been observed in conjunction with various strains of Rust-based malware, such as KrustyLoader, to provide backdoors enabling lines of communication between attackers and their malicious C2 severs [6]. It is unsurprising, then, that it has also been leveraged to exploit zero-day vulnerabilities, including critical vulnerabilities in the Ivanti Connect Secure and Policy Secure services.

In early 2024, Darktrace observed the malicious use of Sliver C2 during an investigation into post-exploitation activity on customer networks affected by the Ivanti vulnerabilities. Fortunately for affected customers, Darktrace DETECT™ was able to recognize the suspicious network-based connectivity that emerged alongside Sliver C2 usage and promptly brought it to the attention of customer security teams for remediation.

How does Silver C2 work?

Given its open-source nature, the Sliver C2 framework is extremely easy to access and download and is designed to support multiple operating systems (OS), including MacOS, Windows, and Linux [4].

Sliver C2 generates implants (aptly referred to as ‘slivers’) that operate on a client-server architecture [1]. An implant contains malicious code used to remotely control a targeted device [5]. Once a ‘sliver’ is deployed on a compromised device, a line of communication is established between the target device and the central C2 server. These connections can then be managed over Mutual TLS (mTLS), WireGuard, HTTP(S), or DNS [1] [4]. Sliver C2 has a wide-range of features, which include dynamic code generation, compile-time obfuscation, multiplayer-mode, staged and stageless payloads, procedurally generated C2 over HTTP(S) and DNS canary blue team detection [4].

Why Do Attackers Use Sliver C2?

Amidst the multitude of reasons why malicious actors opt for Sliver C2 over its counterparts, one stands out: its relative obscurity. This lack of widespread recognition means that security teams may overlook the threat, failing to actively search for it within their networks [3] [5].

Although the presence of Sliver C2 activity could be representative of authorized and expected penetration testing behavior, it could also be indicative of a threat actor attempting to communicate with its malicious infrastructure, so it is crucial for organizations and their security teams to identify such activity at the earliest possible stage.

Darktrace’s Coverage of Sliver C2 Activity

Darktrace’s anomaly-based approach to threat detection means that it does not explicitly attempt to attribute or distinguish between specific C2 infrastructures. Despite this, Darktrace was able to connect Sliver C2 usage to phases of an ongoing attack chain related to the exploitation of zero-day vulnerabilities in Ivanti Connect Secure VPN appliances in January 2024.

Around the time that the zero-day Ivanti vulnerabilities were disclosed, Darktrace detected an internal server on one customer network deviating from its expected pattern of activity. The device was observed making regular connections to endpoints associated with Pulse Secure Cloud Licensing, indicating it was an Ivanti server. It was observed connecting to a string of anomalous hostnames, including ‘cmjk3d071amc01fu9e10ae5rt9jaatj6b.oast[.]live’ and ‘cmjft14b13vpn5vf9i90xdu6akt5k3pnx.oast[.]pro’, via HTTP using the user agent ‘curl/7.19.7 (i686-redhat-linux-gnu) libcurl/7.63.0 OpenSSL/1.0.2n zlib/1.2.7’.

Darktrace further identified that the URI requested during these connections was ‘/’ and the top-level domains (TLDs) of the endpoints in question were known Out-of-band Application Security Testing (OAST) server provider domains, namely ‘oast[.]live’ and ‘oast[.]pro’. OAST is a testing method that is used to verify the security posture of an application by testing it for vulnerabilities from outside of the network [7]. This activity triggered the DETECT model ‘Compromise / Possible Tunnelling to Bin Services’, which breaches when a device is observed sending DNS requests for, or connecting to, ‘request bin’ services. Malicious actors often abuse such services to tunnel data via DNS or HTTP requests. In this specific incident, only two connections were observed, and the total volume of data transferred was relatively low (2,302 bytes transferred externally). It is likely that the connections to OAST servers represented malicious actors testing whether target devices were vulnerable to the Ivanti exploits.

The device proceeded to make several SSL connections to the IP address 103.13.28[.]40, using the destination port 53, which is typically reserved for DNS requests. Darktrace recognized that this activity was unusual as the offending device had never previously been observed using port 53 for SSL connections.

Model Breach Event Log displaying the ‘Application Protocol on Uncommon Port’ DETECT model breaching in response to the unusual use of port 53.
Figure 1: Model Breach Event Log displaying the ‘Application Protocol on Uncommon Port’ DETECT model breaching in response to the unusual use of port 53.

Figure 2: Model Breach Event Log displaying details pertaining to the ‘Application Protocol on Uncommon Port’ DETECT model breach, including the 100% rarity of the port usage.
Figure 2: Model Breach Event Log displaying details pertaining to the ‘Application Protocol on Uncommon Port’ DETECT model breach, including the 100% rarity of the port usage.

Further investigation into the suspicious IP address revealed that it had been flagged as malicious by multiple open-source intelligence (OSINT) vendors [8]. In addition, OSINT sources also identified that the JARM fingerprint of the service running on this IP and port (00000000000000000043d43d00043de2a97eabb398317329f027c66e4c1b01) was linked to the Sliver C2 framework and the mTLS protocol it is known to use [4] [5].

An Additional Example of Darktrace’s Detection of Sliver C2

However, it was not just during the January 2024 exploitation of Ivanti services that Darktrace observed cases of Sliver C2 usages across its customer base.  In March 2023, for example, Darktrace detected devices on multiple customer accounts making beaconing connections to malicious endpoints linked to Sliver C2 infrastructure, including 18.234.7[.]23 [10] [11] [12] [13].

Darktrace identified that the observed connections to this endpoint contained the unusual URI ‘/NIS-[REDACTED]’ which contained 125 characters, including numbers, lower and upper case letters, and special characters like “_”, “/”, and “-“, as well as various other URIs which suggested attempted data exfiltration:

‘/upload/api.html?c=[REDACTED] &fp=[REDACTED]’

  • ‘/samples.html?mx=[REDACTED] &s=[REDACTED]’
  • ‘/actions/samples.html?l=[REDACTED] &tc=[REDACTED]’
  • ‘/api.html?gf=[REDACTED] &x=[REDACTED]’
  • ‘/samples.html?c=[REDACTED] &zo=[REDACTED]’

This anomalous external connectivity was carried out through multiple destination ports, including the key ports 443 and 8888.

Darktrace additionally observed devices on affected customer networks performing TLS beaconing to the IP address 44.202.135[.]229 with the JA3 hash 19e29534fd49dd27d09234e639c4057e. According to OSINT sources, this JA3 hash is associated with the Golang TLS cipher suites in which the Sliver framework is developed [14].

Conclusion

Despite its relative novelty in the threat landscape and its lesser-known status compared to other C2 frameworks, Darktrace has demonstrated its ability effectively detect malicious use of Sliver C2 across numerous customer environments. This included instances where attackers exploited vulnerabilities in the Ivanti Connect Secure and Policy Secure services.

While human security teams may lack awareness of this framework, and traditional rules and signatured-based security tools might not be fully equipped and updated to detect Sliver C2 activity, Darktrace’s Self Learning AI understands its customer networks, users, and devices. As such, Darktrace is adept at identifying subtle deviations in device behavior that could indicate network compromise, including connections to new or unusual external locations, regardless of whether attackers use established or novel C2 frameworks, providing organizations with a sliver of hope in an ever-evolving threat landscape.

Credit to Natalia Sánchez Rocafort, Cyber Security Analyst, Paul Jennings, Principal Analyst Consultant

Appendices

DETECT Model Coverage

  • Compromise / Repeating Connections Over 4 Days
  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Server Activity / Server Activity on New Non-Standard Port
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Compromise / Quick and Regular Windows HTTP Beaconing
  • Compromise / High Volume of Connections with Beacon Score
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / HTTP Beaconing to Rare Destination
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Large Number of Suspicious Failed Connections
  • Compromise / SSL or HTTP Beacon
  • Compromise / Possible Malware HTTP Comms
  • Compromise / Possible Tunnelling to Bin Services
  • Anomalous Connection / Low and Slow Exfiltration to IP
  • Device / New User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Numeric File Download
  • Anomalous Connection / Powershell to Rare External
  • Anomalous Server Activity / New Internet Facing System

List of Indicators of Compromise (IoCs)

18.234.7[.]23 - Destination IP - Likely C2 Server

103.13.28[.]40 - Destination IP - Likely C2 Server

44.202.135[.]229 - Destination IP - Likely C2 Server

References

[1] https://bishopfox.com/tools/sliver

[2] https://vk9-sec.com/how-to-set-up-use-c2-sliver/

[3] https://www.scmagazine.com/brief/sliver-c2-framework-gaining-traction-among-threat-actors

[4] https://github[.]com/BishopFox/sliver

[5] https://www.cybereason.com/blog/sliver-c2-leveraged-by-many-threat-actors

[6] https://securityaffairs.com/158393/malware/ivanti-connect-secure-vpn-deliver-krustyloader.html

[7] https://www.xenonstack.com/insights/out-of-band-application-security-testing

[8] https://www.virustotal.com/gui/ip-address/103.13.28.40/detection

[9] https://threatfox.abuse.ch/browse.php?search=ioc%3A107.174.78.227

[10] https://threatfox.abuse.ch/ioc/1074576/

[11] https://threatfox.abuse.ch/ioc/1093887/

[12] https://threatfox.abuse.ch/ioc/846889/

[13] https://threatfox.abuse.ch/ioc/1093889/

[14] https://github.com/projectdiscovery/nuclei/issues/3330

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Natalia Sánchez Rocafort
Cyber Security Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

January 2, 2025

/

Inside the SOC

A Snake in the Net: Defending Against AiTM Phishing Threats and Mamba 2FA

Default blog imageDefault blog image

What are Adversary-in-the-Middle (AiTM) phishing kits?

Phishing-as-a-Service (PhaaS) platforms have significantly lowered the barriers to entry for cybercriminals, enabling a new wave of sophisticated phishing attacks. Among the most concerning developments in this landscape is the emergence of Adversary-in-the-Middle (AiTM) phishing kits, which enhance traditional phishing tactics by allowing attackers to intercept and manipulate communications in real-time. The PhaaS marketplace offers a wide variety of innovative capabilities, with basic services starting around USD 120 and more advanced services costing around USD 250 monthly [1].

These AiTM kits are designed to create convincing decoy pages that mimic legitimate login interfaces, often pre-filling user information to increase credibility. By acting as a man-in-the-middle, attackers can harvest sensitive data such as usernames, passwords, and even multi-factor authentication (MFA) tokens without raising immediate suspicion. This capability not only makes AiTM attacks more effective but also poses a significant challenge for cybersecurity defenses [2].

Mamba 2FA is one such example of a PhaaS strain with AiTM capabilities that has emerged as a significant threat to users of Microsoft 365 and other enterprise systems. Discovered in May 2024, Mamba 2FA employs advanced AiTM tactics to bypass MFA, making it particularly dangerous for organizations relying on these security measures.

What is Mamba 2FA?

Phishing Mechanism

Mamba 2FA employs highly convincing phishing pages that closely mimic legitimate Microsoft services like OneDrive and SharePoint. These phishing URLs are crafted with a specific structure, incorporating Base64-encoded parameters. This technique allows attackers to tailor the phishing experience to the targeted organization, making the deception more effective. If an invalid parameter is detected, users are redirected to a benign error page, which helps evade automated detection systems [5].

Figure 1: Phishing page mimicking the Microsoft OneDrive service.

Real-Time Communication

A standout feature of Mamba 2FA is its use of the Socket.IO JavaScript library. This library facilitates real-time communication between the phishing page and the attackers' backend servers. As users input sensitive information, such as usernames, passwords, and MFA tokens on the phishing site, this data is immediately relayed to the attackers, enabling swift unauthorized access [5].

Multi-Factor Authentication Bypass

Mamba 2FA specifically targets MFA methods that are not resistant to phishing, such as one-time passwords (OTPs) and push notifications. When a user enters their MFA token, it is captured in real-time by the attackers, who can then use it to access the victim's account immediately. This capability significantly undermines traditional security measures that rely on MFA for account protection.

Infrastructure and Distribution

The platform's infrastructure consists of two main components: link domains and relay servers. Link domains handle initial phishing attempts, while relay servers are responsible for stealing credentials and completing login processes on behalf of the attacker. The relay servers are designed to mask their IP addresses by using proxy services, making it more difficult for security systems to block them [3].

Evasion Techniques

To evade detection by security tools, Mamba 2FA employs several strategies:

  • Sandbox Detection: The platform can detect if it is being analyzed in a sandbox environment and will redirect users to harmless pages like Google’s 404 error page.
  • Dynamic URL Generation: The URLs used in phishing attempts are frequently rotated and often short-lived to avoid being blacklisted by security solutions.
  • HTML Attachments: Phishing emails often include HTML attachments that appear benign but contain hidden JavaScript that redirects users to the phishing page [5].

Darktrace’s Coverage of Mamba 2FA

Starting in July 2024, the Darktrace Threat Research team detected a sudden rise in Microsoft 365 customer accounts logging in from unusual external sources. These accounts were accessed from an anomalous endpoint, 2607:5500:3000:fea[::]2, and exhibited unusual behaviors upon logging into Software-as-a-Service (SaaS) accounts. This activity strongly correlates with a phishing campaign using Mamba 2FA, first documented in late June 2024 and tracked as Mamba 2FA by Sekoia [2][3].

Darktrace / IDENTITY  was able to identify the initial stages of the Mamba 2FA campaign by correlating subtle anomalies, such as unusual SaaS login locations. Using AI based on peer group analysis, it detected unusual behavior associated with these attacks. By leveraging Autonomous Response actions, Darktrace was able to neutralize these threats in every instance of the campaign detected.

On July 23, a SaaS user was observed logging in from a rare ASN and IP address, 2607:5500:3000:fea::2, originating from the US and successfully passed through MFA authentication.

Figure 2: Model Alert Event Log showing Darktrace’s detection of a SaaS user mailbox logging in from an unusual source it correlates with Mamba 2FA relay server.

Almost an hour later, the SaaS user was observed logging in from another suspicious IP address, 45.133.172[.]86, linked to ASN AS174 COGENT-174. This IP, originating from the UK, successfully passed through MFA validation.

Following this unusual access, the SaaS user was notably observed reading emails and files that could contain sensitive payment and contract information. This behavior suggests that the attacker may have been leveraging contextual information about the target to craft further malicious phishing emails or fraudulent invoices. Subsequently, the user was detected creating a new mailbox rule titled 'fdsdf'. This rule was configured to redirect emails from a specific domain to the 'Deleted Items' folder and automatically mark them as read.

Implications of Unusual Email Rules

Such unusual email rule configurations are a common tactic employed by attackers. They often use these rules to automatically forward emails containing sensitive keywords—such as "invoice”, "payment", or "confidential"—to an external address. Additionally, these rules help conceal malicious activities, keeping them hidden from the target and allowing the attacker to operate undetected.

Figure 3: The model alert “SaaS / Compliance / Anomalous New Email Rule,” pertaining to the unusual email rule created by the SaaS user named ‘fdsdf’.

Blocking the action

A few minutes later, the SaaS user from the unusual IP address 45.133.172[.]86 was observed attempting to send an email with the subject “RE: Payments.” Subsequently, Darktrace detected the user engaging in activities that could potentially establish persistence in the compromised account, such as registering a new authenticator app. Recognizing this sequence of anomalous behaviors, Darktrace implemented an Autonomous Response inhibitor, disabling the SaaS user for two hours. This action effectively contained potential malicious activities, such as the distribution of phishing emails and fraudulent invoices, and gave the customer’s security team the necessary time to conduct a thorough investigation and implement appropriate security measures.

Figure 4: Device Event Log displaying Darktrace’s Autonomous Response taking action by blocking the SaaS account.
Figure 5: Darktrace / IDENTITY highlighting the 16 model alerts that triggered during the observed compromise.

In another example from mid-July, similar activities related to the campaign were observed on another customer network. A SaaS user was initially detected logging in from the unusual external endpoint 2607:5500:3000:fea[::]2.

Figure 6: The SaaS / Compromise / SaaS Anomaly Following Anomalous Login model alert was triggered by an unusual login from a suspicious IP address linked to Mamba 2FA.

A few minutes later, in the same manner as demonstrated in the previous case, the actor was observed logging in from another rare endpoint, 102.68.111[.]240. However, this time it was from a source IP located in Lagos, Nigeria, which no other user on the network had been observed connecting from. Once logged in, the SaaS user updated the settings to "User registered Authenticator App with Notification and Code," a possible attempt to maintain persistence in the SaaS account.

Figure 7: Darktrace / IDENTITY highlighted the regular locations for the SaaS user. The rarity scores associated with the Mamba 2FA IP location and another IP located in Nigeria were classified as having very low regularity scores for this user.

Based on unusual patterns of user behavior, a Cyber AI Analyst Incident was also generated, detailing all potential account hijacking activities. Darktrace also applied an Autonomous Response action, disabling the user for over five hours. This swift action was crucial in preventing further unauthorized access, potential data breaches and further implications.

Figure 8: Cyber AI Analyst Incident detailing the unusual activities related to the SaaS account hijacking.

Since the customer had subscribed to Darktrace Security Operations Centre (SOC) services, Darktrace analysts conducted an additional human investigation confirming the account compromise.

How Darktrace Combats Phishing Threats

The initial entry point for Mamba 2FA account compromises primarily involves phishing campaigns using HTML attachments and deceptive links. These phishing attempts are designed to mimic legitimate Microsoft services, such as OneDrive and SharePoint, making them appear authentic to unsuspecting users. Darktrace / EMAIL leverages multiple capabilities to analyze email content for known indicators of phishing. This includes looking for suspicious URLs, unusual attachments (like HTML files with embedded JavaScript), and signs of social engineering tactics commonly used in phishing campaigns like Mamba 2FA. With these capabilities, Darktrace successfully detected Mamba 2FA phishing emails in networks where this tool is integrated into the security layers, consequently preventing further implications and account hijacks of their users.

Mamba 2FA URL Structure and Domain Names

The URL structure used in Mamba 2FA phishing attempts is specifically designed to facilitate the capture of user credentials and MFA tokens while evading detection. These phishing URLs typically follow a pattern that incorporates Base64-encoded parameters, which play a crucial role in the operation of the phishing kit.

The URLs associated with Mamba 2FA phishing pages generally follow this structure [6]:

https://{domain}/{m,n,o}/?{Base64 string}

Below are some potential Mamba 2FA phishing emails, with the Base64 strings already decoded, that were classified as certain threats by Darktrace / EMAIL. This classification was based on identifying multiple suspicious characteristics, such as HTML attachments containing JavaScript code, emails from senders with no previous association with the recipients, analysis of redirect links, among others. These emails were autonomously blocked from being delivered to users' inboxes.

Figure 9: Darktrace / EMAIL highlighted a possible phishing email from Mamba 2FA, which was classified as a 100% anomaly.
Figure 10: Darktrace / EMAIL highlighted a URL that resembles the characteristics associated with Mamba 2FA.

Conclusion

The rise of PhaaS platforms and the advent of AiTM phishing kits represent a concerning evolution in cyber threats, pushing the boundaries of traditional phishing tactics and exposing significant vulnerabilities in current cybersecurity defenses. The ability of these attacks to effortlessly bypass traditional security measures like MFA underscores the need for more sophisticated, adaptive strategies to combat these evolving threats.

By identifying and responding to anomalous activities within Microsoft 365 accounts, Darktrace not only highlights the importance of comprehensive monitoring but also sets a new standard for proactive threat detection. Furthermore, the autonomous threat response capabilities and the exceptional proficiency of Darktrace / EMAIL in intercepting and neutralizing sophisticated phishing attacks illustrate a robust defense mechanism that can effectively safeguard users and maintain the integrity of digital ecosystems.

Credit to Patrick Anjos (Senior Cyber Analyst) and Nahisha Nobregas (Senior Cyber Analyst)

Appendices

Darktrace Model Detections

  • SaaS / Access / M365 High Risk Level Login
  • SaaS / Access / Unusual External Source for SaaS Credential Use
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active
  • SaaS / Compliance / M365 Security Information Modified
  • SaaS / Compromise / Unusual Login and New Email Rule
  • SaaS / Email Nexus / Suspicious Internal Exchange Activity
  • SaaS / Compliance / Anomalous New Email Rule
  • SaaS / Email Nexus / Possible Outbound Email Spam
  • SaaS / Compromise / Unusual Login and Account Update
  • SaaS / Compromise / SaaS Anomaly Following Anomalous Login
  • SaaS / Compliance / M365 Security Information Modified
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active
  • SaaS / Compromise / Unusual Login, Sent Mail, Deleted Sent
  • SaaS / Unusual Activity / Multiple Unusual SaaS Activities
  • SaaS / Email Nexus / Unusual Login Location Following Link to File Storage
  • SaaS / Unusual Activity / Multiple Unusual External Sources For SaaS Credential
  • IaaS / Compliance / Uncommon Azure External User Invite
  • SaaS / Compliance / M365 External User Added to Group
  • SaaS / Access / M365 High Risk Level Login
  • SaaS / Compliance / M365 Security Information Modified
  • SaaS/ Unusual Activity / Unusual MFA Auth and SaaS Activity
  • SaaS / Compromise / Unusual Login and Account Update

Cyber AI Analyst Incidents:

  • Possible Hijack of Office365 Account
  • Possible Hijack of AzureActiveDirectory Account
  • Possible Unsecured Office365 Resource

List of Indicators of Compromise (IoCs)

IoC       Type    Description + Confidence

2607:5500:3000:fea[::]2 - IPv6 - Possible Mamba 2FA relay server

2607:5500:3000:1cab:[:]2 - IPv6 - Possible Mamba 2FA relay server

References

1.     https://securityaffairs.com/136953/cyber-crime/caffeine-phishing-platform.html

2.     https://any.run/cybersecurity-blog/analysis-of-the-phishing-campaign/

3.     https://www.bleepingcomputer.com/news/security/new-mamba-2fa-bypass-service-targets-microsoft-365-accounts/

4.     https://cyberinsider.com/microsoft-365-accounts-targeted-by-new-mamba-2fa-aitm-phishing-threat/

5.     https://blog.sekoia.io/mamba-2fa-a-new-contender-in-the-aitm-phishing-ecosystem/

MITRE ATT&CK Mapping

Tactic – Technique

DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - Cloud Accounts

DISCOVERY - Cloud Service Dashboard

RESOURCE DEVELOPMENT - Compromise Accounts

CREDENTIAL ACCESS - Steal Web Session Cookie

PERSISTENCE - Account Manipulation

PERSISTENCE - Outlook Rules

RESOURCE DEVELOPMENT - Email Accounts

INITIAL ACCESS - Phishing

Continue reading
About the author
Patrick Anjos
Senior Cyber Analyst

Blog

/

December 19, 2024

/
No items found.

Darktrace Recognized in the Gartner® Magic Quadrant™ for Email Security Platforms

Default blog imageDefault blog image

Darktrace has been recognized in the first ever Gartner Magic Quadrant for Email Security Platforms (ESP).  As a Challenger, we have been recognized based on our Ability to Execute and Completeness of Vision.

The Gartner Magic Quadrant for Email Security is designed to help organizations evaluate which email security solutions might be the best fit for their needs by providing a visual representation of the market vendors and the strengths and cautions of different vendors. We encourage our customers to read the full report to get the complete picture.

Darktrace / EMAIL has a unique AI approach to identifying threats, including NLP and behavioral analysis, instead of traditional security measures like signatures and sandboxing – providing protection against advanced attacks like Business Email Compromise (BEC) and spear phishing. We believe our AI-first approach delivers high-quality solutions that our customers trust, allowing them to stay ahead of sophisticated threats that other tools miss.  

We’re proud of Darktrace’s rapid growth, geographic scale, and ability to execute effectively in the email security market, which reflect our commitment to delivering high-quality, reliable solutions that meet the evolving needs of our customers.

What do we believe makes Darktrace the fastest growing email security solution on the market?

An AI-first approach to innovation: Catching the threats others miss

As one of the founders of the ICES category, Darktrace has a long history of innovation, backed by over 200 patents. While other email security solutions are only just starting to apply machine learning (ML) techniques to outdated methods like signature analysis, reputation lists, and sandboxing, Darktrace has redefined the approach to email threat detection with its pioneering AI-driven anomaly detection engine.

Traditional ESPs often miss advanced threats because they rely on rules and signatures that focus on payloads and blindly trust known sources. This approach requires constant updates and frequently fails to detect threats like Business Email Compromise and Spear Phishing. In contrast, Darktrace / EMAIL uses advanced anomaly detection to identify the most sophisticated threats by focusing on unusual patterns and behaviors. This innovative approach has consistently delivered superior detection, stopping on average 58% of the threats that other solutions in the security stack miss.1

But our AI-first approach doesn’t stop at the inbox. At Darktrace, we transcend the limitations of traditional email security by leveraging a platform that unifies insights across multiple domains, providing robust protection against multi-domain threats. Our award-winning solutions defend the most popular attack vectors, including email, messaging, network, and identity protection. By combining signals from all domains, we establish unique behavioral profiles for each device and user, significantly enhancing detection precision.  

This pioneering approach has led to introducing industry-first advancements like QR code analysis and automated incident investigations, alongside game-changing functionality including:

  • Microsoft Teams security with advanced messaging analysis: The ability to identify critical early phishing and insider threats across both email and Microsoft Teams messaging.  
  • AI analyst narratives for improved end user reporting: that reduces phishing investigations by 60% by exposing unique narratives that provide the context of each received email and give feedback to each employee as they interact with their mail.2
  • Mailbox Security Assistant: to perform advanced behavioral browser analysis and stop malicious links within webpages, detecting and remediating 70% more malicious phishing links than traditional tools.3  
  • AI based, autonomous data loss prevention: to immediately secure your organization from misdirected emails, insider threats, and data loss—both classified and unclassified- without any administrative overhead.

Customer trust that fuels exponential growth

With almost 5,000 customers in under 5 years, we've doubled the growth rate of other vendors in the email security market. Our rapid market penetration, fueled by customer satisfaction and pioneering technology, showcases our revolutionary approach and sets new industry standards. 

Darktrace’s exceptional customer retention is fueled by an unparalleled customer experience, extensive regional support, dedicated account teams, and cutting-edge scalable technology. We pride ourselves on having a global network with local expertise, consisting of 110 worldwide offices which provide local language and technical support to offer multilingual, in-house assistance to our customer base.

Check it out – Darktrace / EMAIL has the highest percentage of 5-star ratings with a 4.8 rating on Gartner® Peer Insights™.4

Supporting every stage of your email security journey

Darktrace / EMAIL supports your security maturity journey, from first time security buyers to mature security stacks looking to augment their existing ESPs – by handling advanced threats without extensive tuning. And unlike other solutions that create a siloed and parallel solution, it works harmoniously with native email providers to create a modern email security stack. That’s why Darktrace performs well with first-time email security buyers and has strong renewal rates.

Integrating with Microsoft and Google via API, we replace traditional Secure Email Gateways (SEGs) with a modern, comprehensive email security stack. By combining approaches, our solution merges attack-centric analysis, which learns attack patterns and threat intelligence, with a business-centric approach that understands user behavior and inbox activity to deliver a unified stack that defends the entire threat spectrum – leading Darktrace to be recognized as Microsoft Partner of the year UK 2024.  

Our user-friendly, self-learning AI solution requires minimal tuning and deployment, making it perfect for customers looking for a highly usable but lightly configurable solution that will accompany them throughout their lifetime as they mature their email security stack in line with the evolving threat landscape.

Learn more

Get complimentary access to the full Gartner® Magic Quadrant™ for Email Security Platforms here.

To learn more about Darktrace / EMAIL or to get a free demo, check out the product hub.

References

1 From September 1 – December 31 2023, 58% of the phishing emails analyzed by Darktrace / EMAIL had already passed through native spam filtering and email security controls. (Darktrace End of Year Threat Report 2023)

2 When customers deployed the Darktrace / EMAIL Outlook Add-in there was a 60% decrease in incorrectly reported phishing emails. Darktrace Internal Research, 2024

3 Once a user reports phishing that contains a link, an automated second level triage engages our link analysis infrastructure expanding the signals analyzed. Darktrace Internal Research, 2024

4 Based on 252 reviews as of 19th December 2024

Continue reading
About the author
Carlos Gray
Product Manager
Your data. Our AI.
Elevate your network security with Darktrace AI