Blog
/

Inside the SOC

/
November 6, 2023

How PlugX Malware Has Evolved & Adapted

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Nov 2023
Discover how Darktrace effectively detected and thwarted the PlugX remote access trojan in 2023 despite its highly evasive and adaptive nature.

What is PlugX Remote Access Trojan?

Understanding remote access trojans (RATs)

As malicious actors across the threat landscape continue to pursue more efficient and effective ways of compromising target networks, all while remaining undetected by security measures, it is unsurprising to see an increase in the use of remote access trojans (RATs) in recent years. RATs typically operate stealthily, evading security tools while offering threat actors remote control over infected devices, allowing attackers to execute a wide range of malicious activities like data theft or installing additional malware.

Definition and general functionality of RATs: A Remote Access Trojan (RAT) is a type of malware that enables unauthorized remote control of an infected computer. Once installed, RATs allow attackers to monitor user activities, steal sensitive information, manipulate files, and execute commands. RATs are typically distributed via phishing emails, malicious attachments, drive-by downloads, or exploiting software vulnerabilities. Due to their ability to provide comprehensive control over a compromised system, RATs pose a significant security threat to individuals and organizations.

Historical overview of PlugX

PlugX is one such example of a RAT that has attributed to Chinese threat actors such as Mustang Panda, since it first appeared in the wild back in 2008. It is known for its use in espionage, a modular and plug-in style approach to malware development. It has the ability to evolve with the latest tactics, techniques, and procedures (TTPs) that allow it to avoid the detection of traditional security tools as it implants itself target devices.

How Does PlugX Work?

The ultimate goal of any RAT is to remotely control affected devices with a wide range of capabilities, which in PlugX’s case has typically included rebooting systems, keylogging, managing critical system processes, and file upload/downloads. One technique PlugX heavily relies on is dynamic-link library (DLL) sideloading to infiltrate devices. This technique involves executing a malicious payload that is embedded within a benign executable found in a data link library (DLL) [1]. The embedded payload within the DLL is often encrypted or obfuscated to prevent detection.

What’s more, a new variant of PlugX was observed in the wild across Papua New Guinea, Ghana, Mongolia, Zimbabwe, and Nigeria in August 2022, that added several new capabilities to its toolbox.

Key capabilities of PlugX

The new variation is reported to continuously monitor affected environments for new USB devices to infect, allowing it to spread further through compromised networks [2]. It is then able to hide malicious files within a USB device by using a novel technique that prevents them from being viewed on Windows operating systems (OS). These hidden files can only be viewed on a Unix-like (.nix) OS, or by analyzing an affected USB devices with a forensic tool [2]. The new PlugX variant also has the ability to create a hidden directory, “RECYCLER.BIN”, containing a collection of stolen documents, likely in preparation for exfiltration via its command and control (C2) channels. [3]

Since December 2022, PlugX has been observed targeting networks in Europe through malware delivery via HTML smuggling campaigns, a technique that has been dubbed SmugX [4].

This evasive tactic allows threat actors to prepare and deploy malware via phishing campaigns by exploiting legitimate HTML5 and JavaScript features [5].

Darktrace Coverage of PlugX

Between January and March 2023, Darktrace observed activity relating to the PlugX RAT on multiple customers across the fleet. While PlugX’s TTPs may have bypassed traditional security tools, the anomaly-based detection capabilities of Darktraceallowed it to identify and alert the subtle deviations in the behavior of affected devices, while Darktrace was able to take immediate mitigative action against such anomalous activity and stop attackers in their tracks.  

C2 Communication

Between January and March 2023, Darktrace detected multiple suspicious connections related to the PlugX RAT within customer environments. When a device has been infected, it will typically communicate through C2 infrastructure established for the PlugX RAT. In most cases observed by Darktrace, affected devices exhibited suspicious C2 connections to rare endpoints that were assessed with moderate to high confidence to be linked to PlugX.

On the network of one Darktrace customer the observed communication was a mix of successful and unsuccessful connections at a high volume to rare endpoints on ports such as 110, 443, 5938, and 80. These ports are commonly associated with POP3, HTTPS, TeamViewer RDP / DynGate, and HTTP, respectively.  Figure 1 below showcases this pattern of activity.

Figure 1: Model Breach Event Log demonstrating various successful and unsuccessful connections to the PlugX C2 endpoint 103.56.53[.]46 via various destination ports.

On another customer’s network, Darktrace observed C2 communication involving multiple failed connection attempts to another rare external endpoint associated with PlugX. The device in this case was detected attempting connections to the endpoint, 45.142.166[.]112 on ports 110, 80, and 443 which caused the DETECT model ‘Anomalous Connection / Multiple Failed Connections to Rare Endpoint’ to breach. This model examines devices attempting connections to a rare external endpoint over a short period of time, and it breached in response to almost all PlugX C2 related activity detected by Darktrace. This highlights Darktrace DETECT’s unique ability to identify anomalous activity which appears benign or uncertain, rather than relying on traditional signature-based detections.

Figure 2: Device Event Log demonstrating various successful and unsuccessful connections to the PlugX C2 endpoint 45.142.166[.]112 via various destination on January 27, 2023.

New User Agent

Darktrace's Self-Learning AI approach to threat detection also allowed it to recognize connections to PlugX associated endpoints that utilized a new user agent. In almost all connections to PlugX endpoints detected by Darktrace, the same user agent, Mozilla/5.0 (Windows NT 10.0;Win64;x64)AppleWebKit/537.36, was observed, illustrating a clear pattern in PlugX-related activity

In one example from February 2023, an affected device successfully connected to an endpoint associated with PlugX, 45.142.166[.]112, while using the aforementioned new user agent, as depicted in Figure 3.

Figure 3: The Device Event log above showcases a successful connection to the PlugX associated IP address, 45.142.166[.]112 using the new user agent ‘Mozilla/5.0 (Windows NT 10.0;Win64;x64)AppleWebKit/537.36’.

On March 21, 2023, Darktrace observed similar activity on a separate customer’s network affected by connections to PlugX. This activity included connections to the same endpoint, 45.142.166[.]112. The connection was an HTTP POST request made via proxy with the same new user agent, ‘Mozilla/5.0 (Windows NT 10.0;Win64;x64)AppleWebKit/537.36’. When investigated further this user agent actually reveals very little about itself and appears to be missing a couple of common features that are typically contained in a user agent string, such as a web browser and its version or the mention of Safari before its build ID (‘537.36’).

Additionally, for this connection the URI observed consisted of a random string of 8 hexadecimal characters, namely ‘d819f07a’. This is a technique often used by malware to communicate with its C2 servers, while evading the detection of signature-based detection tools. Darktrace, however, recognized that this external connection to an endpoint with no hostname constituted anomalous behavior, and could have been indicative of a threat actor communicating with malicious infrastructure, thus the ‘Anomalous Connection / Possible Callback URI’ model was breached.

Figure 4: An affected device was detected using the new user agent, ‘Mozilla/5.0 (Windows NT 10.0;Win64;x64)AppleWebKit/537.36’ while connecting to the rare external endpoint 45.142.166[.]112 via proxy.

Numeric File Download

Darktrace’s detection of PlugX activity on another customer’s network, in February 2023, helped to demonstrate related patterns of activity within the C2 communication and tooling attack phases. Observed PlugX activity on this network followed the subsequent pattern; a connection to a PlugX endpoints is made, followed by a HTTP POST request to a numeric URI with a random string of 8 hexadecimal characters, as previously highlighted. Darktrace identified that this activity represented unusual ‘New Activity’ for this device, and thus treated it with suspicion.

Figure 5: New activity was identified by Darktrace in the Device Event Log shown above for connections to the endpoint 45.142.166[.]112 followed by HTTP POSTs to URIs “/8891431c” and “/ba12b866” on February 15, 2023.

The device in question continued to connect to the endpoint and make HTTP POST connections to various URIs relating to PlugX. Additionally, the user agent `Mozilla/5.0 (Windows NT 10.0;Win64;x64)AppleWebKit/537.36` was again detected for these connections. Figure 6 details the activity captured by Darktrace’s Cyber AI Analyst.

Figure 6: The image above showcases activity captured by Darktrace’s AI Analyst for PlugX connections made on February 15, 2023.

Darktrace detected that during these connections, the device in question attempted to download a suspicious file named only with numbers. The use of numeric file names is a technique often used by threat actors to obfuscate the download of malicious files or programs and bypass traditional security tools. Darktrace understood that the download of a numeric file, coupled with the use of an anomalous new user agent, mean the incident should be treated with suspicion. Fortunately, Darktrace RESPOND was enabled in autonomous response mode during this attack, meaning it was able to automatically block the device from downloading the file, or any other files, from the suspicious external location for a two-hour period, potentially preventing the download of PlugX’s malicious tooling.

Conclusion

Amid the continued evolution of PlugX from an espionage tool to a more widely available malware, it is essential that threat detection does not rely on a set of characteristics or indicators, but rather is focused on anomalies. Throughout these cases, Darktrace demonstrated the efficacy of its detection and alerting on emerging activity pertaining to a particularly stealthy and versatile RAT. Over the years, PlugX has continually looked to evolve and survive in the ever-changing threat landscape by adapting new capabilities and TTPs through which it can infect a system and spread to new devices without being noticed by security teams and their tools.

However, Darktrace’s Self-Learning AI allows it to gain a strong understanding of customer networks, learning what constitutes expected network behavior which in turn allows it to recognize the subtle deviations indicative of an ongoing compromise.

Darktrace’s ability to identify emerging threats through anomaly-based detection, rather than relying on established threat intelligence, uniquely positions it to detect and respond to highly adaptable and dynamic threats, like the PlugX malware, regardless of how it may evolve in the future.

Credit to: Nahisha Nobregas, SOC Analyst & Dylan Hinz, Cyber Analyst

Appendices

MITRE ATT&CK Framework

Execution

  • T1059.003 Command and Scripting Interpreter: Windows Command Shell

Persistence and Privilege Escalation

  • T1547.001 Boot or Logon AutoStart Execution: Registry Run Keys / Startup Folder
  • T1574.001 Hijack Execution Flow: DLL Search Order Hijacking
  • T1574.002 Hijack Execution Flow: DLL Side-Loading
  • T1543.003 Create or Modify System Process: Windows Service
  • T1140 Deobfuscate / Decode Files or Information
  • T1083 File and Directory Discovery

Defense Evasion

  • T1564.001 Hide Artifacts: Hidden Files and Directories
  • T1036.004 Masquerading: Task or Service
  • T1036.005 Masquerading: Match Legitimate Name or Location
  • T1027.006 Obfuscated Files or Information: HTML Smuggling

Credential Access

  • T1056.001 Input Capture: Keylogging

Collection

  • T1105 Ingress Tool Transfer

Command and Control

  • T1573.001 Encrypted Channel: Symmetric Cryptography
  • T1070.003 Mail Protocols
  • T1071.001 Web Protocol

DETECT Model Breaches

  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / New User Agent Followed By Numeric File Download
  • Anomalous Connection / Possible Callback URL

Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

45.142.166[.]112 - IP - PlugX C2 Endpoint / moderate - high

103.56.53[.]46 - IP - PlugX C2 Endpoint / moderate - high

Mozilla/5.0 (Windows NT 10.0;Win64;x64)AppleWebKit/537.36 - User Agent - PlugX User Agent / moderate – high

/8891431c - URI - PlugX URI / moderate-high

/ba12b866 - URI - PlugX URI / moderate -high

References

1. https://www.crowdstrike.com/blog/dll-side-loading-how-to-combat-threat-actor-evasion-techniques/

2. https://unit42.paloaltonetworks.com/plugx-variants-in-usbs/

3. https://news.sophos.com/en-us/2023/03/09/border-hopping-plugx-usb-worm/

4. https://thehackernews.com/2023/07/chinese-hackers-use-html-smuggling-to.html

5. https://www.cyfirma.com/outofband/html-smuggling-a-stealthier-approach-to-deliver-malware/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Nahisha Nobregas
SOC Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

November 19, 2024

/
No items found.

Darktrace Leading the Future of Network Detection and Response with Recognition from KuppingerCole

Default blog imageDefault blog image

KuppingerCole has recognized Darktrace as an overall Leader, Product Leader, Market Leader and Innovation Leader in the KuppingerCole Leadership Compass: Network Detection and Response (2024).

With the perimeter all but dissolved, Network Detection and Response (NDR) tools are quickly becoming a critical component of the security stack, as the main tool to span the modern network. NDRs connect on-premises infrastructure to cloud, remote workers, identities, SaaS applications, and IoT/OT – something not available to EDR that requires agents and isolates visibility to individual devices.

KuppingerCole Analysts AG designated Darktrace an ‘Overall Leader’ position because of our continual innovation around user-led security. Self-Learning AI together with automated triage through Cyber AI Analyst and real-time autonomous response actions have been instrumental to security teams in stopping potential threats before they become a breach. With this time saved, Darktrace is leading beyond reactive security to truly harden a network, allowing the team to spend more time in preventive security measures.

Network Detection and Response protects where others fail to reach

NDR solutions operate at the network level, deploying inside or parallel to your network to ingest raw traffic via virtual or physical sensors. This gives them unprecedented potential to identify anomalies and possible breaches in any network - far beyond simple on-prem, into dynamic virtual environments, cloud or hybrid networks, cloud applications, and even remote devices accessing the corporate network via ZTNA or VPN.

Rather than looking at processes level data, NDR can detect the lateral movement of an adversary across multiple assets by analyzing network traffic patterns which endpoint solutions may not be able to identify [1]. In the face of a growing, complex environment, organizations large and small, will benefit from using NDRs either in conjunction, or as the foundation for, their Extended Detection and Response (XDR) for a unified view that improves their overall threat detection, ease of investigation and faster response times.

Today's NDR solutions are expected to include advanced ML and artificial intelligence (AI) algorithms [1]

Traditional IDS & IPS systems are labor intensive, requiring continuous rule creation, outdated signature maintenance, and manual monitoring for false positives or incorrect actions. This is no longer viable against a higher volume and changing landscape, making NDR the natural network tool to level against these evolutions. The role of AI in NDRs is designed to meet this challenge, “to reduce both the labor need for analysis and false positives, as well as add value by improving anomaly detection and overall security posture” .

Celebrating success in leadership and innovation

Darktrace is proud to have been recognized as an NDR “Overall Leader” in KuppingerCole Analyst AG’s Leadership Compass. The report gave further recognition to Darktrace as a ‘Product Leader”, “Innovation Leader” and “Market Leader”.

Maximum scores were received for core product categories, in addition to market presence and financial strength. Particular attention was directed to our innovation. This year has seen several NDR updates via Darktrace’s ActiveAI Security Platform version 6.2 which has enhanced investigation workflows and provided new AI transparency within the toolset.

Positive scores were also received for Darktrace’s deployment ecosystem and surrounding support, minimizing the need for extraneous integrations through a unique platform architecture that connects with over 90 other vendors.

High Scores received in Darktrace’s KuppingerCole Spider Chart across Core NDR capability areas
Figure 1: High Scores received in Darktrace’s KuppingerCole Spider Chart across Core NDR capability areas

Darktrace’s pioneering AI approach sets it apart

Darktrace / NETWORK’s approach is fundamentally different to other NDRs. Continual anomaly-based detection (our Self-Learning AI), understands what is normal across each of your network entities, and then examines deviations from these behaviors rather than needing to apply static rules or ML to adversary techniques. As a result, Darktrace / NETWORK can focus on surfacing the novel threats that cannot be anticipated, whilst our proactive solutions expose gaps that can be exploited and reduce the risk of known threats.    

Across the millions of possible network events that may occur, Darktrace’s Cyber AI Analyst reduces that manual workload for SOC teams by presenting only what is most important in complete collated incidents. This accelerates SOC Level 2 analyses of incidents by 10x2, giving time back, first for any necessary response and then for preventive workflows.

Finally, when incidents begin to escalate, Darktrace can natively (or via third-party) autonomously respond and take precise actions based on a contextual understanding of both the affected assets and incident in question so that threats can be disarmed without impacting wider operations.

Within the KuppingerCole report, several standout strengths were listed:

  • Cyber AI Analyst was celebrated as a core differentiator, enhancing both visibility and investigation into critical network issues and allowing a faster response.
  • Darktrace / NETWORK was singled for its user benefits. Both a clear interface for analysts with advanced filtering and analytical tools, and efficient role-based access control (RBAC) and configuration options for administrators.
  • At the product level, Darktrace was recognized for complete network traffic analysis (NTA) capabilities allowing extensive analysis into components like application use/type, fingerprinting, source/destination communication, in addition to comprehensive protocol support across a range of network device types from IT, OT, IoT and mobiles and detailed MITRE ATT&CK mapping.
  • Finally, at the heart of it, Darktrace’s innovation was highlighted in relation to its intrinsic Self Learning AI, utilizing multiple layers of deep learning, neural networks, LLMs, NLP, Generative AI and more to understand network activity and filter it for what’s critical on an individual customer level.

Going beyond reactive security

Darktrace’s visibility and AI-enabled detection, investigation and response enable security teams to focus on hardening gaps in their network through contextual relevance & priority. Darktrace / NETWORK explicitly gives time back to security teams allowing them to focus on the bigger strategic and governance workflows that sometimes get overlooked. This is enabled through proactive solutions intrinsically connected to our NDR:

  • Darktrace / Proactive Exposure Management, which looks beyond just CVE risks to instead discover, prioritize and validate risks by business impact and how to mobilize against them early, to reduce the number of real threats security teams face.
  • Darktrace / Incident Readiness & Recovery, a solution rather than service-based approach to incident response (IR) that lets teams respond in the best way to each incident and proactively test their familiarity and effectiveness of IR workflows with sophisticated incident simulations involving their own analysts and assets.

Together, these solutions allow Darktrace / NETWORK to go beyond the traditional NDR and shift teams to a more hardened and proactive state.

Putting customers first

Customers continue to sit at the forefront of Darktrace R&D, with their emerging needs and pain points being the direct inspiration for our continued innovation.

This year Darktrace / NETWORK has protected thousands of customers against the latest attacks, from data exfil and destruction, to unapproved privilege escalation and ransomware including strains like Medusa, Qilin and AlphV BlackCat.

In each instance, Darktrace / NETWORK was able to provide a holistic lens of the anomalies present in their traffic, collated those that were important, and either responded or gave teams the ability to take targeted actions against their threats – even when adversaries pivoted. In one example of a Gootloader compromise, Darktrace ensured a SOC went from detection to recovery within 5 days, 92.8% faster than the average containment time of 69 days.

Results like these, focused on user-led security, have secured Darktrace’s position within the latest NDR Leadership Compass.

To find out more about what makes Darktrace / NETWORK special, read the full KuppingerCole report.

References

[1] Osman Celik, KuppingerCole Leadership Compass:Network Detection and Response (2024)

[2] Darktrace's AI Analyst customer fleet data

[3] https://www.ibm.com/reports/data-breach

Continue reading
About the author
Gabriel Few-Wiegratz
Product Marketing Manager

Blog

/

November 18, 2024

/

Inside the SOC

From Royal to BlackSuit: Understanding the Tactics and Impact of a Sophisticated Ransomware Strain

Default blog imageDefault blog image

What is BlackSuit Ransomware?

Since late 2023, Darktrace has detected BlackSuit ransomware infiltrating multiple customer networks in the US. This ransomware has targeted a wide range of industries, including arts, entertainment, real estate, public administration, defense, and social security.

Emerging in May 2023, BlackSuit is believed to be a spinoff of Royal ransomware due to similarities in code and Conti, and most likely consists of Russian and Eastern European hackers [1]. Recorded Future reported that the ransomware had affected 95 organizations worldwide, though the actual number is likely much higher [2]. While BlackSuit does not appear to focus on any particular sector, it has targeted multiple organizations in the healthcare, education, IT, government, retail and manufacturing industries [3]. Employing double extortion tactics, BlackSuit not only encrypts files but also steals sensitive data to leverage ransom payments.

BlackSuit has demanded over USD 500 million in ransoms, with the highest individual demand reaching USD 60 million [4]. Notable targets include CDK Global, Japanese media conglomerate Kadokawa, multiple educational institutions, Octapharma Plasma, and the government of Brazil [5][6][7][8].

Darktrace’s Coverage of BlackSuit Ransomware Attack

Case 1, November 2023

The earliest attack on a Darktrace customer by BlackSuit was detected at the start of November 2023. The unusual network activity began on a weekend—a time commonly chosen by ransomware groups to increase their chances of success, as many security teams operate with reduced staff. Darktrace identified indicators of the attackers’ presence on the network for almost two weeks, during which a total of 15 devices exhibited suspicious behavior.

The attack commenced with unusual internal SMB (Server Message Block) connections using a compromised service account. An internal device uploaded an executable (zzza.exe) to a domain controller (DC) and shortly after, wrote a script (socks5.ps1) to another device. According to a Cybersecurity Advisory from the CISA (Cybersecurity and Infrastructure Security Agency, US), the script file was a PowerShell reverse proxy [9].

Approximately an hour and a half later, the device to which the script was written exhibited uncommon WMI (Windows Management Instrumentation) activity. Two hours after receiving the executable file, the DC was observed making an outgoing NTLM request, using PowerShell to remotely execute commands, distributing differently named executable files (<PART OF THE CUSTOMER’S NAME>.exe), and controlling services on other devices.

Eighteen hours after the start of the unusual activity, Darktrace detected another device making repeated connections to “mystuff.bublup[.]com”, which the aforementioned CISA Advisory identifies as a domain used by BlackSuit for data exfiltration [9].

About ten minutes after the suspicious executables were distributed across the network, and less than 24 hours after the start of the unusual activity, file encryption began. A total of ten devices were seen appending the “.blacksuit” extension to files saved on other devices using SMB, as well as writing ransom notes (readme.blacksuit.txt). The file encryption lasted less than 20 minutes.

 An example of the contents of a BlackSuit ransom note being written over SMB.
Figure 1: An example of the contents of a BlackSuit ransom note being written over SMB.

During this compromise, external connections to endpoints related to ConnectWise’s ScreenConnect remote management tool were also seen from multiple servers, suggesting that the tool was likely being abused for command-and-control (C2) activity. Darktrace identified anomalous connectivity associated with ScreenConnect was seen up to 11 days after the start of the attack.

10 days after the start of the compromise, an account belonging to a manager was detected adding “.blacksuit” extensions to the customer’s Software-a-Service (SaaS) resources while connecting from 173.251.109[.]106. Six minutes after file encryption began, Darktrace flagged the unusual activity and recommended a block. However, since Autonomous Response mode was not enabled, the customer’s security team needed to manually confirm the action. Consequently, suspicious activity continued for about a week after the initial encryption. This included disabling authentication on the account and an unusual Teams session initiated from the suspicious external endpoint 216.151.180[.]147.

Case 2, February 2024

Another BlackSuit compromise occurred at the start of February 2024, when Darktrace identified approximately 50 devices exhibiting ransomware-related activity in another US customer’s environment. Further investigation revealed that a significant number of additional devices had also been compromised. These devices were outside Darktrace’s purview to the customer’s specific deployment configuration. The threat actors managed to exfiltrate around 4 TB of data.

Initial access to the network was gained via a virtual private network (VPN) compromise in January 2024, when suspicious connections from a Romanian IP address were detected. According to CISA, the BlackSuit group often utilizes the services of initial access brokers (IAB)—actors who specialize in infiltrating networks, such as through VPNs, and then selling that unauthorized access to other threat actors [9]. Other initial access vectors include phishing emails, RDP (Remote Desktop Protocol) compromise, and exploitation of vulnerable public-facing applications.

Similar to the first case, the file encryption began at the end of the working week. During this phase of the attack, affected devices were observed encrypting files on other internal devices using two compromised administrator accounts. The encryption activity lasted for approximately six and a half hours. Multiple alerts were sent to the customer from Darktrace’s Security Operations Centre (SOC) team, who began reviewing the activity within four minutes of the start of the file encryption.

Darktrace’s Cyber AI Analyst clustering together multiple events related to unusual activity on the network, including file encryption over SMB by BlackSuit.
Figure 2: Darktrace’s Cyber AI Analyst clustering together multiple events related to unusual activity on the network, including file encryption over SMB by BlackSuit.
Figure 3: A spike in model alerts on the day when file encryption by BlackSuit was observed in the network.

In this case, the threat actor utilized SystemBC proxy malware for command and control (C2). A domain controller (DC) was seen connecting to 137.220.61[.]94 on the same day the file encryption took place. The DC was also observed connecting to a ProxyScrape domain around the same time, which is related to the SOCKS5 protocol used by SystemBC. During this compromise, RDP, SSH, and SMB were used for lateral movement within the network.

Figure 4: A Cyber AI Analyst investigation alerting to a device on the VPN subnet making suspicious internal SSH connections due to malicious actors moving laterally within the network.

Signs of threat actors potentially being on the network were observed as early as two days prior to the file encryption. This included unusual internal network scanning via multiple protocols (ICMP, SMB, RDP, etc.), credential brute-forcing, SMB access failures, and anonymous SMBv1 sessions. These activities were traced to IP addresses belonging to two desktop devices in the VPN subnet associated with two regular employee user accounts. Threat actors were seemingly able to exploit at least one of these accounts due to LDAP legacy policies being in place on the customer’s environment.

A Cyber AI Analyst incident summary alerting to a device on the VPN subnet conducting internal reconnaissance.
Figure 5: A Cyber AI Analyst incident summary alerting to a device on the VPN subnet conducting internal reconnaissance.
Examples of the proposed Darktrace Autonomous Response actions on the day BlackSuit initiated file encryption.
Figure 6: Examples of the proposed Darktrace Autonomous Response actions on the day BlackSuit initiated file encryption.

Case 3, August 2024

The most recently observed BlackSuit compromise occurred in August 2024, when a device was observed attempting to brute-force the credentials of an IT administrator. This activity continued for 11 days.

Once the admin’s account was successfully compromised, network scanning, unusual WMI, and SAMR (Security Account Manager Remote protocol) activity followed. A spike in the use of this account was detected on a Sunday—once again, the attackers seemingly targeting the weekend—when the account was used by nearly 50 different devices.

The compromised admin’s account was exploited for data gathering via SMB, resulting in the movement of 200 GB of data between internal devices in preparation for exfiltration. The files were then archived using the naming convention “*.part<number>.rar”.

Around the same time, Darktrace observed data transfers from 19 internal devices to “bublup-media-production.s3.amazonaws[.]com,” totaling just over 200 GB—the same volume of data gathered internally. Connections to other Bublup domains were also detected. The internal data download and external data transfer activity took approximately 8-9 hours.

Unfortunately, Darktrace was not configured in Autonomous Response mode at the time of the attack, meaning any mitigative actions to stop the data gathering or exfiltration required human confirmation.  

One of the compromised devices was seen sending 80 GB of data to bublup-media-production.s3.amazonaws[.]com within a span of 4 hours.
Figure 7: One of the compromised devices was seen sending 80 GB of data to bublup-media-production.s3.amazonaws[.]com within a span of 4 hours.

Once the information was stolen, the threat actor moved on to the final stage of the attack—file encryption. Five internal devices, using either the compromised admin account or connecting via anonymous SMBv1 sessions, were seen encrypting files and writing ransom notes to five other devices on the network. The attempts at file encryption continued for around two hours, but Darktrace’s Autonomous Response capability was able to block the activity and prevent the attack from escalating.

Conclusion

The persistent and evolving threat posed by ransomware like BlackSuit underscores the critical importance of robust cybersecurity measures across all sectors. Since its emergence in 2023, BlackSuit has demonstrated a sophisticated approach to infiltrating networks, leveraging double extortion tactics, and demanding substantial ransoms. The cases highlighted above illustrate the varied methods and persistence of BlackSuit attackers, from exploiting VPN vulnerabilities to abusing remote management tools and targeting off-hours to maximize impact.

Although many similar connection patterns, such as the abuse of Bublup services for data exfiltration or the use of SOCKS5 proxies for C2, were observed during cases investigated by Darktrace, BlackSuit actors are highly sophisticated and tailors their attacks to each target organization. The consequences of a successful attack can be highly disruptive, and remediation efforts can be time-consuming and costly. This includes taking the entire network offline while responding to the incident, restoring encrypted files from backups (if available), dealing with damage to the organization’s reputation, and potential lawsuits.

These BlackSuit ransomware incidents emphasize the need for continuous vigilance, timely updates to security protocols, and the adoption of autonomous response technologies to swiftly counteract such attacks. As ransomware tactics continue to evolve, organizations must remain agile and informed to protect their critical assets and data. By learning from these incidents and enhancing their cybersecurity frameworks, organizations can better defend against the relentless threat of ransomware and ensure the resilience of their operations in an increasingly digital world.

Credit to Signe Zaharka (Principal Cyber Analyst) and Adam Potter (Senior Cyber Analyst)

Insights from Darktrace’s First 6: Half-year threat report for 2024

First 6: half year threat report darktrace screenshot

Darktrace’s First 6: Half-Year Threat Report 2024 highlights the latest attack trends and key threats observed by the Darktrace Threat Research team in the first six months of 2024.

  • Focuses on anomaly detection and behavioral analysis to identify threats
  • Maps mitigated cases to known, publicly attributed threats for deeper context
  • Offers guidance on improving security posture to defend against persistent threats

Appendices

Darktrace Model Detections

Anomalous Connection / Data Sent to Rare Domain

Anomalous Connection / High Volume of New or Uncommon Service Control

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / Rare WinRM Outgoing

Anomalous Connection / SMB Enumeration

Anomalous Connection / Suspicious Activity On High Risk Device

Anomalous Connection / Suspicious Read Write Ratio

Anomalous Connection / Suspicious Read Write Ratio and Unusual SMB

Anomalous Connection / Sustained MIME Type Conversion

Anomalous Connection / Uncommon 1 GiB Outbound

Anomalous Connection / Unusual Admin SMB Session

Anomalous File / Internal / Additional Extension Appended to SMB File

Anomalous File / Internal / Executable Uploaded to DC

Anomalous File / Internal / Unusual SMB Script Write

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Anomalous Server Activity / Outgoing from Server

Anomalous Server Activity / Rare External from Server

Anomalous Server Activity / Write to Network Accessible WebRoot

Compliance / Outgoing NTLM Request from DC

Compliance / Remote Management Tool On Server

Compliance / SMB Drive Write

Compromise / Beacon to Young Endpoint

Compromise / Beaconing Activity To External Rare

Compromise / Ransomware / Possible Ransom Note Read

Compromise / Ransomware / Possible Ransom Note Write

Compromise / Ransomware / SMB Reads then Writes with Additional Extensions

Compromise / Ransomware / Suspicious SMB Activity

Device / Anomalous RDP Followed By Multiple Model Breaches

Device / EXE Files Distributed to Multiple Devices

Device / Internet Facing Device with High Priority Alert

Device / Large Number of Model Breaches

Device / Large Number of Model Breaches from Critical Network Device

Device / Multiple Lateral Movement Model Breaches

Device / Network Scan

Device / New or Uncommon WMI Activity

Device / New or Unusual Remote Command Execution

Device / New User Agent To Internal Server

Device / SMB Lateral Movement

Device / SMB Session Brute Force (Admin)

Device / Suspicious SMB Scanning Activity

Device / Unusual LDAP Query For Domain Admins

SaaS / Access / Teams Activity from Rare Endpoint

SaaS / Resource / SaaS Resources With Additional Extensions

SaaS / Unusual Activity / Disabled Strong Authentication

SaaS / Unusual Activity / Multiple Unusual SaaS Activity Scores

SaaS / Unusual Activity / Unusual SaaS Activity Score

SaaS / Unusual Activity / Unusual Volume of SaaS Modifications

Unusual Activity / Anomalous SMB Delete Volume

Unusual Activity / Anomalous SMB Move & Write

Unusual Activity / High Volume Client Data Transfer

Unusual Activity / High Volume Server Data Transfer

Unusual Activity / Internal Data Transfer

Unusual Activity / SMB Access Failures

Unusual Activity / Sustained Anomalous SMB Activity

Unusual Activity / Unusual External Data to New Endpoint

User / New Admin Credentials on Client

User / New Admin Credentials on Server

User/ Kerberos Password Bruteforce

Autonomous Response Models

Antigena / Network / External Threat / Antigena File then New Outbound Block

Antigena / Network / External Threat / Antigena Ransomware Block

Antigena / Network / External Threat / Antigena Suspicious Activity Block

Antigena / Network / External Threat / SMB Ratio Antigena Block

Antigena / Network / Insider Threat / Antigena Internal Anomalous File Activity

Antigena / Network / Insider Threat / Antigena Internal Data Transfer Block

Antigena / Network / Insider Threat / Antigena Large Data Volume Outbound Block

Antigena / Network / Insider Threat / Antigena Network Scan Block

Antigena / Network / Insider Threat / Antigena Unusual Privileged User Activities Block

Antigena / Network / Insider Threat / Antigena Unusual Privileged User Activities Pattern of Life Block

Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Antigena / Network / Significant Anomaly / Repeated Antigena Breaches

Antigena / SaaS / Antigena Unusual Activity Block

List of Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

.blacksuit - File extension – When encrypting the files, this extension is appended to the filename – High

readme.blacksuit.txt – ransom note - A file demanding cryptocurrency payment in exchange for decrypting the victim's files and not leaking the stolen data – High

mystuff.bublup[.]com, bublup-media-production.s3.amazonaws[.]com – data exfiltration domains related to an organization and project management app that has document sharing functionality – High

137.220.61[.]94:4001 – SystemBC C2 related IP address (this tool is often used by other ransomware groups as well) - Medium

173.251.109[.]106 – IP address seen during a SaaS BlackSuit compromise (during file encryption) – Medium

216.151.180[.]147 – IP address seen during a SaaS BlackSuit compromise (during an unusual Teams session) - Medium

MITRE ATT&CK Mapping

Tactic - Technqiue

Account Manipulation - PERSISTENCE - T1098

Alarm Suppression - INHIBIT RESPONSE FUNCTION - T0878

Application Layer Protocol - COMMAND AND CONTROL - T1071

Automated Collection - COLLECTION - T1119

Block Command Message - INHIBIT RESPONSE FUNCTION - T0803

Block Reporting Message - INHIBIT RESPONSE FUNCTION - T0804

Browser Extensions - PERSISTENCE - T1176

Brute Force I/O - IMPAIR PROCESS CONTROL - T0806

Brute Force - CREDENTIAL ACCESS - T1110

Client Configurations - RECONNAISSANCE - T1592.004 - T1592

Cloud Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078.004 - T1078

Data Destruction - IMPACT - T1485

Data Destruction - INHIBIT RESPONSE FUNCTION - T0809

Data Encrypted for Impact - IMPACT - T1486

Data from Cloud Storage Object - COLLECTION - T1530

Data Staged - COLLECTION - T1074

Domain Groups - DISCOVERY - T1069.002 - T1069

Email Collection - COLLECTION - T1114

Exfiltration Over C2 Channel - EXFILTRATION - T1041

Exfiltration to Cloud Storage - EXFILTRATION - T1567.002 - T1567

Exploit Public - Facing Application - INITIAL ACCESS - T1190

Exploitation for Privilege Escalation - PRIVILEGE ESCALATION - T0890

Exploitation of Remote Services - LATERAL MOVEMENT - T1210

File and Directory Discovery - DISCOVERY - T1083

File Deletion - DEFENSE EVASION - T1070.004 - T1070

IP Addresses - RECONNAISSANCE - T1590.005 - T1590

Lateral Tool Transfer - LATERAL MOVEMENT - T1570

LLMNR/NBT - NS Poisoning and SMB Relay - CREDENTIAL ACCESS, COLLECTION - T1557.001 - T1557

Modify Alarm Settings - INHIBIT RESPONSE FUNCTION - T0838

Modify Control Logic - IMPAIR PROCESS CONTROL, INHIBIT RESPONSE FUNCTION - T0833

Modify Parameter - IMPAIR PROCESS CONTROL - T0836

Network Service Scanning - DISCOVERY - T1046

Network Share Discovery - DISCOVERY - T1135

Pass the Hash - DEFENSE EVASION, LATERAL MOVEMENT - T1550.002 - T1550

RDP Hijacking - LATERAL MOVEMENT - T1563.002 - T1563

Remote Access Software - COMMAND AND CONTROL - T1219

Remote Desktop Protocol - LATERAL MOVEMENT - T1021.001 - T1021

Remote System Discovery - DISCOVERY - T1018

Rename System Utilities - DEFENSE EVASION - T1036.003 - T1036

Scanning IP Blocks - RECONNAISSANCE - T1595.001 - T1595

Scheduled Transfer - EXFILTRATION - T1029

Service Execution - EXECUTION - T1569.002 - T1569

Service Stop - IMPACT - T1489

SMB/Windows Admin Shares - LATERAL MOVEMENT - T1021.002 - T1021

Stored Data Manipulation - IMPACT - T1565.001 - T1565

Taint Shared Content - LATERAL MOVEMENT - T1080

Valid Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078

Vulnerability Scanning - RECONNAISSANCE - T1595.002 - T1595

Web Protocols - COMMAND AND CONTROL - T1071.001 - T1071

Web Services - RESOURCE DEVELOPMENT - T1583.006 - T1583

Web Shell - PERSISTENCE - T1505.003 - T1505

Windows Management Instrumentation - EXECUTION - T1047

Windows Remote Management - LATERAL MOVEMENT - T1021.006 - T1021

References

1.     https://www.trendmicro.com/en_us/research/23/e/investigating-blacksuit-ransomwares-similarities-to-royal.html

2.     https://www.reuters.com/technology/cybersecurity/blacksuit-hacker-behind-cdk-global-attack-hitting-us-car-dealers-2024-06-27/

3.     https://www.sentinelone.com/anthology/blacksuit/

4.     https://thehackernews.com/2024/08/fbi-and-cisa-warn-of-blacksuit.html

5.     https://www.techtarget.com/whatis/feature/The-CDK-Global-outage-Explaining-how-it-happened

6.     https://therecord.media/japanese-media-kadokawa-investigating-cyber

7.     https://therecord.media/plasma-donation-company-cyberattack-blacksuit

8.     https://thecyberexpress.com/government-of-brazil-cyberattack-by-blacksuit/

9.     https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-061a

Continue reading
About the author
Signe Zaharka
Senior Cyber Security Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI