Blog
/

Inside the SOC

Ransomware

/
November 6, 2022

Behind Yanluowang: Unveiling Cyber Threat Tactics

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Nov 2022
Discover the latest insights into the Yanluowang leak organization, uncovering its members and tactics.

Background of Yanluowang

Yanluowang ransomware, also known as Dryxiphia, was first spotted in October 2021 by Symantec’s Threat Hunter Team. However, it has been operational since August 2021, when a threat actor used it to attack U.S. corporations. Said attack shared similar TTPs with ransomware Thieflock, designed by Fivehands ransomware gangs. This connection alluded to a possible link between the two through the presence or influence of an affiliate. The group has been known for successfully ransoming organisations globally, particularly those in the financial, manufacturing, IT services, consultancy, and engineering sectors.

Yanluowang attacks typically begin with initial reconnaissance, followed by credential harvesting and data exfiltration before finally encrypting the victim’s files. Once deployed on compromised networks, Yanluowang halts hypervisor virtual machines, all running processes and encrypts files using the “.yanluowang” extension. A file with name README.txt, containing a ransom note is also dropped. The note also warns victims against contacting law enforcement, recovery companies or attempting to decrypt the files themselves. Failure to follow this advice would result in distributed denial of service attacks against a victim, its employees and business partners. Followed by another attack, a few weeks later, in which all the victim’s files would be deleted.

The group’s name “Yanluowang” was inspired by the Chinese mythological figure Yanluowang, suggesting the group’s possible Chinese origin. However, the recent leak of chat logs belonging to the group, revealed those involved in the organisation spoke Russian. 

 Leak of Yanluowang’s chat logs

 On the 31st of October, a Twitter user named @yanluowangleaks shared the matrix chat and server leaks of the Yanluowang ransomware gang, alongside the builder and decryption source. In total, six files contained internal conversations between the group’s members. From the analysis of these chats, at least eighteen people have been involved in Yanluowang operations.

Twitter account where the leaks and decryption source were shared
Figure 1: Twitter account where the leaks and decryption source were shared

Potential members: ‘@killanas', '@saint', '@stealer', '@djonny', '@calls', '@felix', '@win32', '@nets', '@seeyousoon', '@shoker', '@ddos', '@gykko', '@loader1', '@guki', '@shiwa', '@zztop', '@al', '@coder1'

Most active members: ‘@saint’, ‘@killanas’, ‘@guki’, ‘@felix’, ‘@stealer’. 

To make the most sense out of the data that we analyzed, we combined the findings into two categories: tactics and organization.

Tactics 

From the leaked chat logs, several insights into the group’s operational security and TTPs were gained. Firstly, members were not aware of each other’s offline identities. Secondly, discussions surrounding security precautions for moving finances were discussed by members @killanas and @felix. The two exchanged recommendations on reliable currency exchange platforms as well as which ones to avoid that were known to leak data to law enforcement. The members also expressed paranoia over being caught with substantial amounts of money and therefore took precautions such as withdrawing smaller amounts of cash or using QR codes for withdrawals.

Additionally, the chat logs exposed the TTPs of Yanluowang. Exchanges between the group’s members @stealer, @calls and @saint, explored the possibilities of conducting attacks against critical infrastructure. One of these members, @call, was also quick to emphasise that Yanluowang would not target the critical infrastructure of former Soviet countries. Beyond targets, the chat logs also highlighted Yanluowang’s use of the ransomware, PayloadBIN but also that attacks that involved it may potentially have been misattributed to another ransomware actor, Evil Corp.

Further insight surrounding Yanluowang’s source code was also gained as it was revealed that it had been previously published on XSS.is as a downloadable file. The conversations surrounding this revealed that two members, @killanas and @saint, suspected @stealer was responsible for the leak. This suspicion was supported by @saint, defending another member whom he had known for eight years. It was later revealed that the code had been shared after a request to purchase it was made by a Chinese national. @saint also used their personal connections to have the download link removed from XSS.is. These connections indicate that some members of Yanluowang are well embedded in the ransomware and wider cybercrime community.

Another insight gained from the leaked chat logs was an expression by @saint in support of Ukraine, stating, “We stand with Ukraine” on the negotiation page of Yanluowang’s website. This action reflects a similar trend observed among threat actors where they have taken sides in the Russia-Ukraine conflict.

Regarding Yanluowang’s engagement with other groups, it was found that a former member of Conti had joined the group. This inference was made by @saint when a conversation regarding the Conti leak revolved around the possible identification of the now Yanluowang member @guki, in the Conti files. It was also commented that Conti was losing a considerable number of its members who were then looking for new work. Conversations about other ransomware groups were had with the mentioning of the REVIL group by @saint, specifically stating that five arrested members of the gang were former classmates. He backed his statement by attaching the article about it, to which @djonny replies that those are indeed REVIL members and that he knows it from his sources.

Organization 

When going through the chat logs, several observations were made that can offer some insights into the group's organizational structure. In one of the leaked files, user @saint was the one to publish the requirements for the group's ".onion" website and was also observed instructing other users on the tasks they had to complete. Based on this, @saint could be considered the leader of the group. Additionally, there was evidence indicating that a few users could be in their 30s or 40s, while most participants are in their 20s.

More details regarding Yanluowang's organizational structure were discussed deeper into the leak. The examples indicate various sub-groups within the Yanlouwang group and that a specific person coordinates each group. From the logs, there is a high probability that @killanas is the leader of the development team and has several people working under him. It is also possible that @stealer is on the same level as @killanas and is potentially the supervisor of another team within the group. This was corroborated when @stealer expressed concerns about the absence of certain group members on several occasions. There is also evidence showing that he was one of three people with access to the source code of the group. 

Role delineation within the group was also quite clear, with each user having specific tasks: DDoS (distributed denial of service) attacks, social engineering, victim negotiations, pentesting or development, to mention a few. When it came to recruiting new members, mostly pentesters, Yanluowang would recruit through XSS.is and Exploit.in forums.

Underground analysis and members’ identification 

From the leaked chat logs, several “.onion” URLs were extracted; however, upon further investigation, each site had been taken offline and removed from the TOR hashring. This suggests that Yanluowang may have halted all operations. One of the users on XSS.is posted a picture showing that the Yanluowang onion website was hacked, stating, “CHECKMATE!! YANLUOWANG CHATS HACKED @YANLUOWANGLEAKS TIME’S UP!!”.

Figure 2: The screenshot of Yanluowang website on Tor (currently offline)

After learning that Yanluowang used Russian Web Forums, we did an additional search to see what we could find about the group and the mentioned nicknames. 

By searching through XSS.Is we managed to identify the user registered as @yanluowang. The date of the registration on the forum dates to 15 March 2022. Curiously, at the time of analysis, we noticed the user was online. There were in total 20 messages posted by @yanluowang, with a few publications indicating the group is looking for new pentesters.

Figure 3: The screenshot of Yanluowang profile on XSS.is 

Figure 4: The screenshot of Yanluowang posts about pentester recruitment on XSS.is 

While going through the messages, it was noticed the reaction posted by another user identified as @Sa1ntJohn, which could be the gang member @saint.

Figure 5: The screenshot of Sa1ntJohn’s profile on XSS.is

Looking further, we identified that user @Ekranoplan published three links to the website doxbin.com containing information about three potential members of the YanLuoWang gang: @killanas/coder, @hardbass and @Joe/Uncle. The profile information was published by the user @Xander2727.

Figure 6: The screenshot of Yanlouwang member-profile leak on XSS.is
Figure 7: The screenshot of @hardbass Yanlouwang member profile leak
Figure 8: The screenshot of @killanas/coder Yanlouwang member profile leak.

If the provided information is correct, two group members are Russian and in their 30s, while another member is Ukrainian and in his 20s. One of the members, @killanas, who was also referenced in chat logs, is identified as the lead developer of the Yanluowang group; giving the interpretation of the chat leaks a high-level of confidence. Another two members, who were not referenced in the logs, took roles as Cracked Software/Malware provider and English translator/Victim Negotiator.

Implications for the wider ransomware landscape

To conclude with the potential implications of this leak, we have corroborated the evidence gathered throughout this investigation and employed contrarian analytical techniques. The ascertained implications that follow our mainline judgement, supporting evidence and our current analytical view on the matter can be categorized into three key components of this leak:

Impact on the ransomware landscape

The leak of Yanluowang’s chat logs has several implications for the broader ransomware landscape. This leak, much like the Conti leak in March, spells the end for Yanluowang operations for the time being, given how much of the group’s inner workings it has exposed. This could have an adverse effect. While Yanluowang did not control as large of a share of the ransomware market as Conti did, their downfall will undoubtedly create a vacuum space for established groups for their market share. The latter being a consequence of the release of their source code and build tools. 

Source code

The release of Yanluowang’s source code has several outcomes. If the recipients have no malintent, it could aid in reverse engineering the ransomware, like how a decryption tool for Yanluowng was released earlier this year. An alternative scenario is that the publication of the source code will increase the reach and deployment of this ransomware in the future, in adapted or modified versions by other threat actors. Reusing leaked material is notorious among ransomware actors, as seen in the past, when Babuk’s source code was leaked and led to the development of several variants based on this leak, including Rook and Pandora. This could also make it harder to attribute attacks to one specific group.

Members

The migration of unexposed Yanluowang members to other ransomware gangs could further add to the proliferation of ransomware groups. Such forms of spreading ransomware have been documented in the past when former Conti members repurposed their tactics to join efforts with an initial access broker, UAC-0098. Yet, the absence of evidence from members expressing and/or acting upon this claim requires further investigation and analysis. However, as there is no evidence of absence – this implication is based on the previously observed behavior from members of other ransomware gangs.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Taisiia Garkava
Security Analyst
Dillon Ashmore
Security and Research
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

January 2, 2025

/

Inside the SOC

A Snake in the Net: Defending Against AiTM Phishing Threats and Mamba 2FA

Default blog imageDefault blog image

What are Adversary-in-the-Middle (AiTM) phishing kits?

Phishing-as-a-Service (PhaaS) platforms have significantly lowered the barriers to entry for cybercriminals, enabling a new wave of sophisticated phishing attacks. Among the most concerning developments in this landscape is the emergence of Adversary-in-the-Middle (AiTM) phishing kits, which enhance traditional phishing tactics by allowing attackers to intercept and manipulate communications in real-time. The PhaaS marketplace offers a wide variety of innovative capabilities, with basic services starting around USD 120 and more advanced services costing around USD 250 monthly [1].

These AiTM kits are designed to create convincing decoy pages that mimic legitimate login interfaces, often pre-filling user information to increase credibility. By acting as a man-in-the-middle, attackers can harvest sensitive data such as usernames, passwords, and even multi-factor authentication (MFA) tokens without raising immediate suspicion. This capability not only makes AiTM attacks more effective but also poses a significant challenge for cybersecurity defenses [2].

Mamba 2FA is one such example of a PhaaS strain with AiTM capabilities that has emerged as a significant threat to users of Microsoft 365 and other enterprise systems. Discovered in May 2024, Mamba 2FA employs advanced AiTM tactics to bypass MFA, making it particularly dangerous for organizations relying on these security measures.

What is Mamba 2FA?

Phishing Mechanism

Mamba 2FA employs highly convincing phishing pages that closely mimic legitimate Microsoft services like OneDrive and SharePoint. These phishing URLs are crafted with a specific structure, incorporating Base64-encoded parameters. This technique allows attackers to tailor the phishing experience to the targeted organization, making the deception more effective. If an invalid parameter is detected, users are redirected to a benign error page, which helps evade automated detection systems [5].

Figure 1: Phishing page mimicking the Microsoft OneDrive service.

Real-Time Communication

A standout feature of Mamba 2FA is its use of the Socket.IO JavaScript library. This library facilitates real-time communication between the phishing page and the attackers' backend servers. As users input sensitive information, such as usernames, passwords, and MFA tokens on the phishing site, this data is immediately relayed to the attackers, enabling swift unauthorized access [5].

Multi-Factor Authentication Bypass

Mamba 2FA specifically targets MFA methods that are not resistant to phishing, such as one-time passwords (OTPs) and push notifications. When a user enters their MFA token, it is captured in real-time by the attackers, who can then use it to access the victim's account immediately. This capability significantly undermines traditional security measures that rely on MFA for account protection.

Infrastructure and Distribution

The platform's infrastructure consists of two main components: link domains and relay servers. Link domains handle initial phishing attempts, while relay servers are responsible for stealing credentials and completing login processes on behalf of the attacker. The relay servers are designed to mask their IP addresses by using proxy services, making it more difficult for security systems to block them [3].

Evasion Techniques

To evade detection by security tools, Mamba 2FA employs several strategies:

  • Sandbox Detection: The platform can detect if it is being analyzed in a sandbox environment and will redirect users to harmless pages like Google’s 404 error page.
  • Dynamic URL Generation: The URLs used in phishing attempts are frequently rotated and often short-lived to avoid being blacklisted by security solutions.
  • HTML Attachments: Phishing emails often include HTML attachments that appear benign but contain hidden JavaScript that redirects users to the phishing page [5].

Darktrace’s Coverage of Mamba 2FA

Starting in July 2024, the Darktrace Threat Research team detected a sudden rise in Microsoft 365 customer accounts logging in from unusual external sources. These accounts were accessed from an anomalous endpoint, 2607:5500:3000:fea[::]2, and exhibited unusual behaviors upon logging into Software-as-a-Service (SaaS) accounts. This activity strongly correlates with a phishing campaign using Mamba 2FA, first documented in late June 2024 and tracked as Mamba 2FA by Sekoia [2][3].

Darktrace / IDENTITY  was able to identify the initial stages of the Mamba 2FA campaign by correlating subtle anomalies, such as unusual SaaS login locations. Using AI based on peer group analysis, it detected unusual behavior associated with these attacks. By leveraging Autonomous Response actions, Darktrace was able to neutralize these threats in every instance of the campaign detected.

On July 23, a SaaS user was observed logging in from a rare ASN and IP address, 2607:5500:3000:fea::2, originating from the US and successfully passed through MFA authentication.

Figure 2: Model Alert Event Log showing Darktrace’s detection of a SaaS user mailbox logging in from an unusual source it correlates with Mamba 2FA relay server.

Almost an hour later, the SaaS user was observed logging in from another suspicious IP address, 45.133.172[.]86, linked to ASN AS174 COGENT-174. This IP, originating from the UK, successfully passed through MFA validation.

Following this unusual access, the SaaS user was notably observed reading emails and files that could contain sensitive payment and contract information. This behavior suggests that the attacker may have been leveraging contextual information about the target to craft further malicious phishing emails or fraudulent invoices. Subsequently, the user was detected creating a new mailbox rule titled 'fdsdf'. This rule was configured to redirect emails from a specific domain to the 'Deleted Items' folder and automatically mark them as read.

Implications of Unusual Email Rules

Such unusual email rule configurations are a common tactic employed by attackers. They often use these rules to automatically forward emails containing sensitive keywords—such as "invoice”, "payment", or "confidential"—to an external address. Additionally, these rules help conceal malicious activities, keeping them hidden from the target and allowing the attacker to operate undetected.

Figure 3: The model alert “SaaS / Compliance / Anomalous New Email Rule,” pertaining to the unusual email rule created by the SaaS user named ‘fdsdf’.

Blocking the action

A few minutes later, the SaaS user from the unusual IP address 45.133.172[.]86 was observed attempting to send an email with the subject “RE: Payments.” Subsequently, Darktrace detected the user engaging in activities that could potentially establish persistence in the compromised account, such as registering a new authenticator app. Recognizing this sequence of anomalous behaviors, Darktrace implemented an Autonomous Response inhibitor, disabling the SaaS user for two hours. This action effectively contained potential malicious activities, such as the distribution of phishing emails and fraudulent invoices, and gave the customer’s security team the necessary time to conduct a thorough investigation and implement appropriate security measures.

Figure 4: Device Event Log displaying Darktrace’s Autonomous Response taking action by blocking the SaaS account.
Figure 5: Darktrace / IDENTITY highlighting the 16 model alerts that triggered during the observed compromise.

In another example from mid-July, similar activities related to the campaign were observed on another customer network. A SaaS user was initially detected logging in from the unusual external endpoint 2607:5500:3000:fea[::]2.

Figure 6: The SaaS / Compromise / SaaS Anomaly Following Anomalous Login model alert was triggered by an unusual login from a suspicious IP address linked to Mamba 2FA.

A few minutes later, in the same manner as demonstrated in the previous case, the actor was observed logging in from another rare endpoint, 102.68.111[.]240. However, this time it was from a source IP located in Lagos, Nigeria, which no other user on the network had been observed connecting from. Once logged in, the SaaS user updated the settings to "User registered Authenticator App with Notification and Code," a possible attempt to maintain persistence in the SaaS account.

Figure 7: Darktrace / IDENTITY highlighted the regular locations for the SaaS user. The rarity scores associated with the Mamba 2FA IP location and another IP located in Nigeria were classified as having very low regularity scores for this user.

Based on unusual patterns of user behavior, a Cyber AI Analyst Incident was also generated, detailing all potential account hijacking activities. Darktrace also applied an Autonomous Response action, disabling the user for over five hours. This swift action was crucial in preventing further unauthorized access, potential data breaches and further implications.

Figure 8: Cyber AI Analyst Incident detailing the unusual activities related to the SaaS account hijacking.

Since the customer had subscribed to Darktrace Security Operations Centre (SOC) services, Darktrace analysts conducted an additional human investigation confirming the account compromise.

How Darktrace Combats Phishing Threats

The initial entry point for Mamba 2FA account compromises primarily involves phishing campaigns using HTML attachments and deceptive links. These phishing attempts are designed to mimic legitimate Microsoft services, such as OneDrive and SharePoint, making them appear authentic to unsuspecting users. Darktrace / EMAIL leverages multiple capabilities to analyze email content for known indicators of phishing. This includes looking for suspicious URLs, unusual attachments (like HTML files with embedded JavaScript), and signs of social engineering tactics commonly used in phishing campaigns like Mamba 2FA. With these capabilities, Darktrace successfully detected Mamba 2FA phishing emails in networks where this tool is integrated into the security layers, consequently preventing further implications and account hijacks of their users.

Mamba 2FA URL Structure and Domain Names

The URL structure used in Mamba 2FA phishing attempts is specifically designed to facilitate the capture of user credentials and MFA tokens while evading detection. These phishing URLs typically follow a pattern that incorporates Base64-encoded parameters, which play a crucial role in the operation of the phishing kit.

The URLs associated with Mamba 2FA phishing pages generally follow this structure [6]:

https://{domain}/{m,n,o}/?{Base64 string}

Below are some potential Mamba 2FA phishing emails, with the Base64 strings already decoded, that were classified as certain threats by Darktrace / EMAIL. This classification was based on identifying multiple suspicious characteristics, such as HTML attachments containing JavaScript code, emails from senders with no previous association with the recipients, analysis of redirect links, among others. These emails were autonomously blocked from being delivered to users' inboxes.

Figure 9: Darktrace / EMAIL highlighted a possible phishing email from Mamba 2FA, which was classified as a 100% anomaly.
Figure 10: Darktrace / EMAIL highlighted a URL that resembles the characteristics associated with Mamba 2FA.

Conclusion

The rise of PhaaS platforms and the advent of AiTM phishing kits represent a concerning evolution in cyber threats, pushing the boundaries of traditional phishing tactics and exposing significant vulnerabilities in current cybersecurity defenses. The ability of these attacks to effortlessly bypass traditional security measures like MFA underscores the need for more sophisticated, adaptive strategies to combat these evolving threats.

By identifying and responding to anomalous activities within Microsoft 365 accounts, Darktrace not only highlights the importance of comprehensive monitoring but also sets a new standard for proactive threat detection. Furthermore, the autonomous threat response capabilities and the exceptional proficiency of Darktrace / EMAIL in intercepting and neutralizing sophisticated phishing attacks illustrate a robust defense mechanism that can effectively safeguard users and maintain the integrity of digital ecosystems.

Credit to Patrick Anjos (Senior Cyber Analyst) and Nahisha Nobregas (Senior Cyber Analyst)

Appendices

Darktrace Model Detections

  • SaaS / Access / M365 High Risk Level Login
  • SaaS / Access / Unusual External Source for SaaS Credential Use
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active
  • SaaS / Compliance / M365 Security Information Modified
  • SaaS / Compromise / Unusual Login and New Email Rule
  • SaaS / Email Nexus / Suspicious Internal Exchange Activity
  • SaaS / Compliance / Anomalous New Email Rule
  • SaaS / Email Nexus / Possible Outbound Email Spam
  • SaaS / Compromise / Unusual Login and Account Update
  • SaaS / Compromise / SaaS Anomaly Following Anomalous Login
  • SaaS / Compliance / M365 Security Information Modified
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active
  • SaaS / Compromise / Unusual Login, Sent Mail, Deleted Sent
  • SaaS / Unusual Activity / Multiple Unusual SaaS Activities
  • SaaS / Email Nexus / Unusual Login Location Following Link to File Storage
  • SaaS / Unusual Activity / Multiple Unusual External Sources For SaaS Credential
  • IaaS / Compliance / Uncommon Azure External User Invite
  • SaaS / Compliance / M365 External User Added to Group
  • SaaS / Access / M365 High Risk Level Login
  • SaaS / Compliance / M365 Security Information Modified
  • SaaS/ Unusual Activity / Unusual MFA Auth and SaaS Activity
  • SaaS / Compromise / Unusual Login and Account Update

Cyber AI Analyst Incidents:

  • Possible Hijack of Office365 Account
  • Possible Hijack of AzureActiveDirectory Account
  • Possible Unsecured Office365 Resource

List of Indicators of Compromise (IoCs)

IoC       Type    Description + Confidence

2607:5500:3000:fea[::]2 - IPv6 - Possible Mamba 2FA relay server

2607:5500:3000:1cab:[:]2 - IPv6 - Possible Mamba 2FA relay server

References

1.     https://securityaffairs.com/136953/cyber-crime/caffeine-phishing-platform.html

2.     https://any.run/cybersecurity-blog/analysis-of-the-phishing-campaign/

3.     https://www.bleepingcomputer.com/news/security/new-mamba-2fa-bypass-service-targets-microsoft-365-accounts/

4.     https://cyberinsider.com/microsoft-365-accounts-targeted-by-new-mamba-2fa-aitm-phishing-threat/

5.     https://blog.sekoia.io/mamba-2fa-a-new-contender-in-the-aitm-phishing-ecosystem/

MITRE ATT&CK Mapping

Tactic – Technique

DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - Cloud Accounts

DISCOVERY - Cloud Service Dashboard

RESOURCE DEVELOPMENT - Compromise Accounts

CREDENTIAL ACCESS - Steal Web Session Cookie

PERSISTENCE - Account Manipulation

PERSISTENCE - Outlook Rules

RESOURCE DEVELOPMENT - Email Accounts

INITIAL ACCESS - Phishing

Continue reading
About the author
Patrick Anjos
Senior Cyber Analyst

Blog

/

December 19, 2024

/
No items found.

Darktrace Recognized in the Gartner® Magic Quadrant™ for Email Security Platforms

Default blog imageDefault blog image

Darktrace has been recognized in the first ever Gartner Magic Quadrant for Email Security Platforms (ESP).  As a Challenger, we have been recognized based on our Ability to Execute and Completeness of Vision.

The Gartner Magic Quadrant for Email Security is designed to help organizations evaluate which email security solutions might be the best fit for their needs by providing a visual representation of the market vendors and the strengths and cautions of different vendors. We encourage our customers to read the full report to get the complete picture.

Darktrace / EMAIL has a unique AI approach to identifying threats, including NLP and behavioral analysis, instead of traditional security measures like signatures and sandboxing – providing protection against advanced attacks like Business Email Compromise (BEC) and spear phishing. We believe our AI-first approach delivers high-quality solutions that our customers trust, allowing them to stay ahead of sophisticated threats that other tools miss.  

We’re proud of Darktrace’s rapid growth, geographic scale, and ability to execute effectively in the email security market, which reflect our commitment to delivering high-quality, reliable solutions that meet the evolving needs of our customers.

What do we believe makes Darktrace the fastest growing email security solution on the market?

An AI-first approach to innovation: Catching the threats others miss

As one of the founders of the ICES category, Darktrace has a long history of innovation, backed by over 200 patents. While other email security solutions are only just starting to apply machine learning (ML) techniques to outdated methods like signature analysis, reputation lists, and sandboxing, Darktrace has redefined the approach to email threat detection with its pioneering AI-driven anomaly detection engine.

Traditional ESPs often miss advanced threats because they rely on rules and signatures that focus on payloads and blindly trust known sources. This approach requires constant updates and frequently fails to detect threats like Business Email Compromise and Spear Phishing. In contrast, Darktrace / EMAIL uses advanced anomaly detection to identify the most sophisticated threats by focusing on unusual patterns and behaviors. This innovative approach has consistently delivered superior detection, stopping on average 58% of the threats that other solutions in the security stack miss.1

But our AI-first approach doesn’t stop at the inbox. At Darktrace, we transcend the limitations of traditional email security by leveraging a platform that unifies insights across multiple domains, providing robust protection against multi-domain threats. Our award-winning solutions defend the most popular attack vectors, including email, messaging, network, and identity protection. By combining signals from all domains, we establish unique behavioral profiles for each device and user, significantly enhancing detection precision.  

This pioneering approach has led to introducing industry-first advancements like QR code analysis and automated incident investigations, alongside game-changing functionality including:

  • Microsoft Teams security with advanced messaging analysis: The ability to identify critical early phishing and insider threats across both email and Microsoft Teams messaging.  
  • AI analyst narratives for improved end user reporting: that reduces phishing investigations by 60% by exposing unique narratives that provide the context of each received email and give feedback to each employee as they interact with their mail.2
  • Mailbox Security Assistant: to perform advanced behavioral browser analysis and stop malicious links within webpages, detecting and remediating 70% more malicious phishing links than traditional tools.3  
  • AI based, autonomous data loss prevention: to immediately secure your organization from misdirected emails, insider threats, and data loss—both classified and unclassified- without any administrative overhead.

Customer trust that fuels exponential growth

With almost 5,000 customers in under 5 years, we've doubled the growth rate of other vendors in the email security market. Our rapid market penetration, fueled by customer satisfaction and pioneering technology, showcases our revolutionary approach and sets new industry standards. 

Darktrace’s exceptional customer retention is fueled by an unparalleled customer experience, extensive regional support, dedicated account teams, and cutting-edge scalable technology. We pride ourselves on having a global network with local expertise, consisting of 110 worldwide offices which provide local language and technical support to offer multilingual, in-house assistance to our customer base.

Check it out – Darktrace / EMAIL has the highest percentage of 5-star ratings with a 4.8 rating on Gartner® Peer Insights™.4

Supporting every stage of your email security journey

Darktrace / EMAIL supports your security maturity journey, from first time security buyers to mature security stacks looking to augment their existing ESPs – by handling advanced threats without extensive tuning. And unlike other solutions that create a siloed and parallel solution, it works harmoniously with native email providers to create a modern email security stack. That’s why Darktrace performs well with first-time email security buyers and has strong renewal rates.

Integrating with Microsoft and Google via API, we replace traditional Secure Email Gateways (SEGs) with a modern, comprehensive email security stack. By combining approaches, our solution merges attack-centric analysis, which learns attack patterns and threat intelligence, with a business-centric approach that understands user behavior and inbox activity to deliver a unified stack that defends the entire threat spectrum – leading Darktrace to be recognized as Microsoft Partner of the year UK 2024.  

Our user-friendly, self-learning AI solution requires minimal tuning and deployment, making it perfect for customers looking for a highly usable but lightly configurable solution that will accompany them throughout their lifetime as they mature their email security stack in line with the evolving threat landscape.

Learn more

Get complimentary access to the full Gartner® Magic Quadrant™ for Email Security Platforms here.

To learn more about Darktrace / EMAIL or to get a free demo, check out the product hub.

References

1 From September 1 – December 31 2023, 58% of the phishing emails analyzed by Darktrace / EMAIL had already passed through native spam filtering and email security controls. (Darktrace End of Year Threat Report 2023)

2 When customers deployed the Darktrace / EMAIL Outlook Add-in there was a 60% decrease in incorrectly reported phishing emails. Darktrace Internal Research, 2024

3 Once a user reports phishing that contains a link, an automated second level triage engages our link analysis infrastructure expanding the signals analyzed. Darktrace Internal Research, 2024

4 Based on 252 reviews as of 19th December 2024

Continue reading
About the author
Carlos Gray
Product Manager
Your data. Our AI.
Elevate your network security with Darktrace AI