Blog
/

Inside the SOC

/
January 31, 2024

How Darktrace Defeated SmokeLoader Malware

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
31
Jan 2024
Read how Darktrace's AI identified and neutralized SmokeLoader malware. Gain insights into their proactive approach to cybersecurity.

What is Loader Malware?

Loader malware is a type of malicious software designed primarily to infiltrate a system and then download and execute additional malicious payloads.

In recent years, loader malware has emerged as a significant threat for organizations worldwide. This trend is expected to continue given the widespread availability of many loader strains within the Malware-as-a-Service (MaaS) marketplace. The MaaS marketplace contains a wide variety of innovative strains which are both affordable, with toolkits ranging from USD 400 to USD 1,650 [1], and continuously improving, aiming to avoid traditional detection mechanisms.

SmokeLoader is one such example of a MaaS strain that has been observed in the wild since 2011 and continues to pose a significant threat to organizations and their security teams.

How does SmokeLoader Malware work?

SmokeLoader’s ability to drop an array of different malware strains onto infected systems, from backdoors, ransomware, cryptominers, password stealers, point-of-sale malware and banking trojans, means its a highly versatile loader that has remained consistently popular among threat actors.

In addition to its versatility, it also exhibits advanced evasion strategies that make it difficult for traditional security solutions to detect and remove, and it is easily distributed via methods like spam emails or malicious file downloads.

Between July and August 2023, Darktrace observed an increasing trend in SmokeLoader compromises across its customer base. The anomaly-based threat detection capabilities of Darktrace, coupled with the autonomous response technology, identified and contained the SmokeLoader infections in their initial stages, preventing attackers from causing further disruption by deploying other malicious software or ransomware.

SmokeLoader Malware Attack Details

PROPagate Injection Technique

SmokeLoader utilizes the PROPagate code injection technique, a less common method that inserts malicious code into existing processes in order to appear legitimate and bypass traditional signature-based security measures [2] [3]. In the case of SmokeLoader, this technique exploits the Windows SetWindowsSubclass function, which is typically used to add or change the behavior of Windows Operation System. By manipulating this function, SmokeLoader can inject its code into other running processes, such as the Internet Explorer. This not only helps to disguise  the malware's activity but also allows attackers to leverage the permissions and capabilities of the infected process.

Obfuscation Methods

SmokeLoader is known to employ several obfuscation techniques to evade the detection and analysis of security teams. The techniques include scrambling portable executable files, encrypting its malicious code, obfuscating API functions and packing, and are intended to make the malware’s code appear harmless or unremarkable to antivirus software. This allows attackers to slip past defenses and execute their malicious activities while remaining undetected.

Infection Vector and Communication

SmokeLoader typically spreads via phishing emails that employ social engineering tactics to convince users to unknowingly download malicious payloads and execute the malware. Once installed on target networks, SmokeLoader acts as a backdoor, allowing attackers to control infected systems and download further malicious payloads from command-and-control (C2) servers. SmokeLoader uses fast flux, a DNS technique utilized by botets whereby IP addresses associated with C2 domains are rapidly changed, making it difficult to trace the source of the attack. This technique also boosts the resilience of attack, as taking down one or two malicious IP addresses will not significantly impact the botnet's operation.

Continuous Evolution

As with many MaaS strains, SmokeLoader is continuously evolving, with its developers regularly adding new features and techniques to increase its effectiveness and evasiveness. This includes new obfuscation methods, injection techniques, and communication protocols. This constant evolution makes SmokeLoader a significant threat and underscores the importance of advanced threat detection and response capabilities solution.

Darktrace’s Coverage of SmokeLoader Attack

Between July and August 2023, Darktrace detected one particular SmokeLoader infection at multiple stages of its kill chain on a customer network. This detection was made possible by Darktrace DETECT’s anomaly-based approach and Self-Learning AI that allows it to identify subtle deviations in device behavior.

One of the key components of this process is the classification of endpoint rarity and determining whether an endpoint is new or unusual for any given network. This classification is applied to various aspects of observed endpoints, such as domains, IP addresses, or hostnames within the network. It thereby plays a vital role in identifying SmokeLoader activity, such as the initial infection vector or C2 communication, which typically involve a device contacting a malicious endpoint associated with SmokeLoader.

The First Signs of Infection SmokeLoader Infection

Beginning in July 2023, Darktrace observed a surge in suspicious activities that were assessed with moderate to high confidence to be associated with SmokeLoader malware.

For example on July 30, a device was observed making a successful HTTPS request to humman[.]art, a domain that had never been seen on the network, and therefore classified as 100% rare by DETECT. During this connection, the device in question received a total of 6.0 KiB of data from the unusual endpoint. Open-source intelligence (OSINT) sources reported with high confidence that this domain was associated with the SmokeLoader C2 botnet.

The device was then detected making an HTTP request to another 100% rare external IP, namely 85.208.139[.]35, using a new user agent. This request contained the URI ‘/DefenUpdate.exe’, suggesting a possible download of an executable (.exe) file. This was corroborated by the total amount of data received in this connection, 4.3 MB. Both the file name and its size suggest that the offending device may have downloaded additional malicious tooling from the SmokeLoader C2 endpoint, such as a trojan or information stealer, as reported on OSINT platforms [4].

Figure 1: Device event log showing the moment when a device made its first connection to a SmokeLoader associated domain, and the use of a new user agent. A few seconds later, the DETECT model “Anomalous Connection / New User Agent to IP Without Hostname” breached.

The observed new user agent, “Mozilla/5.0 (Windows NT 10.0; Win64; x64; Trident/7.0; rv:11.0) like Gecko” was identified as suspicious by Darktrace leading to the “Anomalous Connection / New User Agent to IP Without Hostname” DETECT model breach.

As this specific user agent was associated with the Internet Explorer browser running on Windows 10, it may not have appeared suspicious to traditional security tools. However, Darktrace’s anomaly-based detection allows it to identify and mitigate emerging threats, even those that utilize sophisticated evasion techniques.

This is particularly noteworthy in this case because, as discussed earlier, SmokeLoader is known to inject its malicious code into legitimate processes, like Internet Explorer.

Figure 2: Darktrace detecting the affected device leveraging a new user agent and establishing an anomalous HTTP connection with an external IP, which was 100% rare to the network.

C2 Communication

Darktrace continued to observe the device making repeated connections to the humman[.]art endpoint. Over the next few days. On August 7, the device was observed making unusual POST requests to the endpoint using port 80, breaching the ‘Anomalous Connection / Multiple HTTP POSTs to Rare Hostname’ DETECT model. These observed POST requests were observed over a period of around 10 days and consisted of a pattern of 8 requests, each with a ten-minute interval.

Figure 3: Model Breach Event Log highlighting the Darktrace DETECT model breach ‘Anomalous Connection / Multiple HTTP POSTs to Rare Hostname’.

Upon investigating the details of this activity identified by Darktrace DETECT, a particular pattern was observed in these requests: they used the same user-agent, “Mozilla/5.0 (Windows NT 10.0; Win64; x64; Trident/7.0; rv:11.0) like Gecko”, which was previously detected in the initial breach.

Additionally, they the requests had a constantly changing  eferrer header, possibly using randomly generated domain names for each request. Further examination of the packet capture (PCAP) from these requests revealed that the payload in these POST requests contained an RC4 encrypted string, strongly indicating SmokeLoader C2 activity.

Figure4: Advanced Search results display an unusual pattern in the requests made by the device to the hostname humman[.]art. This pattern shows a constant change in the referrer header for each request, indicating anomalous behavior.
Figure 5: The PCAP shows the payload seen in these POST requests contained an RC4 encrypted string strongly indicating SmokeLoader C2 activity.  

Unfortunately in this case, Darktrace RESPOND was not active on the network meaning that the attack was able to progress through its kill chain. Despite this, the timely alerts and detailed incident insights provided by Darktrace DETECT allowed the customer’s security team to begin their remediation process, implementing blocks on their firewall, thus preventing the SmokeLoader malware from continuing its communication with C2 infrastructure.

Darktrace RESPOND Halting Potential Threats from the Initial Stages of Detection

With Darktrace RESPOND, organizations can move beyond threat detection to proactive defense against emerging threats. RESPOND is designed to halt threats as soon as they are identified by DETECT, preventing them from escalating into full-blown compromises. This is achieved through advanced machine learning and Self-Learning AI that is able to understand  the normal ‘pattern of life’ of customer networks, allowing for swift and accurate threat detection and response.

One pertinent example was seen on July 6, when Darktrace detected a separate SmokeLoader case on a customer network with RESPOND enabled in autonomous response mode. Darktrace DETECT initially identified a string of anomalous activity associated with the download of suspicious executable files, triggering the ‘Anomalous File / Multiple EXE from Rare External Locations’ model to breach.

The device was observed downloading an executable file (‘6523.exe’ and ‘/g.exe’) via HTTP over port 80. These downloads originated from endpoints that had never been seen within the customer’s environment, namely ‘hugersi[.]com’ and ‘45.66.230[.]164’, both of which had strongly been linked to SmokeLoader by OSINT sources, likely indicating the initial infection stage of the attack [5].

Figure 6: This figure illustrates Darktrace DETECT observing a device downloading multiple .exe files from rare endpoints and the associated model breach, ‘Anomalous File / Multiple EXE from Rare External Locations’.

Around the same time, Darktrace also observed the same device downloading an unusual file with a numeric file name. Threat actors often employ this tactic in order to avoid using file name patterns that could easily be recognized and blocked by traditional security measures; by frequently changing file names, malicious executables are more likely to remain undetected.

Figure 7: Graph showing the unusually high number of executable files downloaded by the device during the initial infection stage of the attack. The orange and red circles represent the number of model breaches that the device made during the observed activity related to SmokeLoader infection.
Figure 8: This figure illustrates the moment when Darktrace DETECT identified a suspicious download with a numeric file name.

With Darktrace RESPOND active and enabled in autonomous response mode, the SmokeLoader infection was thwarted in the first instance. RESPOND took swift autonomous action by blocking connections to the suspicious endpoints identified by DETECT, blocking all outgoing traffic, and enforcing a pre-established “pattern of life” on offending devices. By enforcing a patten of life on a device, Darktrace RESPOND ensures that it cannot deviate from its ‘normal’ activity to carry out potentially malicious activity, while allowing the device to continue expected business operations.

Figure 9:  A total of 8 RESPOND actions were applied, including blocking connections to suspicious endpoints and domains associated with SmokeLoader.

In addition to the autonomous mitigative actions taken by RESPOND, this customer also received a Proactive Threat Notification (PTN) informing them of potentially malicious activity on their network. This prompted the Darktrace Security Operations Center (SOC) to investigate and document the incident, allowing the customer’s security team to shift their focus to remediating and removing the threat of SmokeLoader.

Conclusion

Ultimately, Darktrace showcased its ability to detect and contain versatile and evasive strains of loader malware, like SmokeLoader. Despite its adeptness at bypassing conventional security tools by frequently changing its C2 infrastructure, utilizing existing processes to infect malicious code, and obfuscating malicious file and domain names, Darktrace’s anomaly-based approach allowed it to recognize such activity as deviations from expected network behavior, regardless of their apparent legitimacy.

Considering SmokeLoader’s wide array of functions, including C2 communication that could be used to facilitate additional attacks like exfiltration, or even the deployment of information-stealers or ransomware, Darktrace proved to be crucial in safeguarding customer networks. By identifying and mitigating SmokeLoader at the earliest possible stage, Darktrace effectively prevented the compromises from escalating into more damaging and disruptive compromises.

With the threat of loader malware expected to continue growing alongside the boom of the MaaS industry, it is paramount for organizations to adopt proactive security solutions, like Darktrace DETECT+RESPOND, that are able to make intelligent decisions to identify and neutralize sophisticated attacks.

Credit to Patrick Anjos, Senior Cyber Analyst, Justin Torres, Cyber Analyst

Appendices

Darktrace DETECT Model Detections

- Anomalous Connection / New User Agent to IP Without Hostname

- Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

- Anomalous File / Multiple EXE from Rare External Locations

- Anomalous File / Numeric File Download

List of IOCs (IOC / Type / Description + Confidence)

- 85.208.139[.]35 / IP / SmokeLoader C2 Endpoint

- 185.174.137[.]109 / IP / SmokeLoader C2 Endpoint

- 45.66.230[.]164 / IP / SmokeLoader C2 Endpoint

- 91.215.85[.]147 / IP / SmokeLoader C2 Endpoint

- tolilolihul[.]net / Hostname / SmokeLoader C2 Endpoint

- bulimu55t[.]net / Hostname / SmokeLoader C2 Endpoint

- potunulit[.]org / Hostname / SmokeLoader C2 Endpoint

- hugersi[.]com / Hostname / SmokeLoader C2 Endpoint

- human[.]art / Hostname / SmokeLoader C2 Endpoint

- 371b0d5c867c2f33ae270faa14946c77f4b0953 / SHA1 / SmokeLoader Executable

References:

[1] https://bazaar.abuse.ch/sample/d7c395ab2b6ef69210221337ea292e204b0f73fef8840b6e64ab88595eda45b3/#intel

[2] https://malpedia.caad.fkie.fraunhofer.de/details/win.smokeloader

[3] https://www.darkreading.com/cyber-risk/breaking-down-the-propagate-code-injection-attack

[4] https://n1ght-w0lf.github.io/malware%20analysis/smokeloader/

[5] https://therecord.media/surge-in-smokeloader-malware-attacks-targeting-ukrainian-financial-gov-orgs

MITRE ATT&CK Mapping

Model: Anomalous Connection / New User Agent to IP Without Hostname

ID: T1071.001

Sub technique: T1071

Tactic: COMMAND AND CONTROL

Technique Name: Web Protocols

Model: Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

ID: T1185

Sub technique: -

Tactic: COLLECTION

Technique Name: Man in the Browser

ID: T1071.001

Sub technique: T1071

Tactic: COMMAND AND CONTROL

Technique Name: Web Protocols

Model: Anomalous File / Multiple EXE from Rare External Locations

ID: T1189

Sub technique: -

Tactic: INITIAL ACCESS

Technique Name: Drive-by Compromise

ID: T1588.001

Sub technique: - T1588

Tactic: RESOURCE DEVELOPMENT

Technique Name: Malware

Model: Anomalous File / Numeric File Download

ID: T1189

Sub technique: -

Tactic: INITIAL ACCESS

Technique Name: Drive-by Compromise

ID: T1588.001

Sub technique: - T1588

Tactic: RESOURCE DEVELOPMENT

Technique Name: Malware

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Patrick Anjos
Senior Cyber Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

November 19, 2024

/
No items found.

Darktrace Leading the Future of Network Detection and Response with Recognition from KuppingerCole

Default blog imageDefault blog image

KuppingerCole has recognized Darktrace as an overall Leader, Product Leader, Market Leader and Innovation Leader in the KuppingerCole Leadership Compass: Network Detection and Response (2024).

With the perimeter all but dissolved, Network Detection and Response (NDR) tools are quickly becoming a critical component of the security stack, as the main tool to span the modern network. NDRs connect on-premises infrastructure to cloud, remote workers, identities, SaaS applications, and IoT/OT – something not available to EDR that requires agents and isolates visibility to individual devices.

KuppingerCole Analysts AG designated Darktrace an ‘Overall Leader’ position because of our continual innovation around user-led security. Self-Learning AI together with automated triage through Cyber AI Analyst and real-time autonomous response actions have been instrumental to security teams in stopping potential threats before they become a breach. With this time saved, Darktrace is leading beyond reactive security to truly harden a network, allowing the team to spend more time in preventive security measures.

Network Detection and Response protects where others fail to reach

NDR solutions operate at the network level, deploying inside or parallel to your network to ingest raw traffic via virtual or physical sensors. This gives them unprecedented potential to identify anomalies and possible breaches in any network - far beyond simple on-prem, into dynamic virtual environments, cloud or hybrid networks, cloud applications, and even remote devices accessing the corporate network via ZTNA or VPN.

Rather than looking at processes level data, NDR can detect the lateral movement of an adversary across multiple assets by analyzing network traffic patterns which endpoint solutions may not be able to identify [1]. In the face of a growing, complex environment, organizations large and small, will benefit from using NDRs either in conjunction, or as the foundation for, their Extended Detection and Response (XDR) for a unified view that improves their overall threat detection, ease of investigation and faster response times.

Today's NDR solutions are expected to include advanced ML and artificial intelligence (AI) algorithms [1]

Traditional IDS & IPS systems are labor intensive, requiring continuous rule creation, outdated signature maintenance, and manual monitoring for false positives or incorrect actions. This is no longer viable against a higher volume and changing landscape, making NDR the natural network tool to level against these evolutions. The role of AI in NDRs is designed to meet this challenge, “to reduce both the labor need for analysis and false positives, as well as add value by improving anomaly detection and overall security posture” .

Celebrating success in leadership and innovation

Darktrace is proud to have been recognized as an NDR “Overall Leader” in KuppingerCole Analyst AG’s Leadership Compass. The report gave further recognition to Darktrace as a ‘Product Leader”, “Innovation Leader” and “Market Leader”.

Maximum scores were received for core product categories, in addition to market presence and financial strength. Particular attention was directed to our innovation. This year has seen several NDR updates via Darktrace’s ActiveAI Security Platform version 6.2 which has enhanced investigation workflows and provided new AI transparency within the toolset.

Positive scores were also received for Darktrace’s deployment ecosystem and surrounding support, minimizing the need for extraneous integrations through a unique platform architecture that connects with over 90 other vendors.

High Scores received in Darktrace’s KuppingerCole Spider Chart across Core NDR capability areas
Figure 1: High Scores received in Darktrace’s KuppingerCole Spider Chart across Core NDR capability areas

Darktrace’s pioneering AI approach sets it apart

Darktrace / NETWORK’s approach is fundamentally different to other NDRs. Continual anomaly-based detection (our Self-Learning AI), understands what is normal across each of your network entities, and then examines deviations from these behaviors rather than needing to apply static rules or ML to adversary techniques. As a result, Darktrace / NETWORK can focus on surfacing the novel threats that cannot be anticipated, whilst our proactive solutions expose gaps that can be exploited and reduce the risk of known threats.    

Across the millions of possible network events that may occur, Darktrace’s Cyber AI Analyst reduces that manual workload for SOC teams by presenting only what is most important in complete collated incidents. This accelerates SOC Level 2 analyses of incidents by 10x2, giving time back, first for any necessary response and then for preventive workflows.

Finally, when incidents begin to escalate, Darktrace can natively (or via third-party) autonomously respond and take precise actions based on a contextual understanding of both the affected assets and incident in question so that threats can be disarmed without impacting wider operations.

Within the KuppingerCole report, several standout strengths were listed:

  • Cyber AI Analyst was celebrated as a core differentiator, enhancing both visibility and investigation into critical network issues and allowing a faster response.
  • Darktrace / NETWORK was singled for its user benefits. Both a clear interface for analysts with advanced filtering and analytical tools, and efficient role-based access control (RBAC) and configuration options for administrators.
  • At the product level, Darktrace was recognized for complete network traffic analysis (NTA) capabilities allowing extensive analysis into components like application use/type, fingerprinting, source/destination communication, in addition to comprehensive protocol support across a range of network device types from IT, OT, IoT and mobiles and detailed MITRE ATT&CK mapping.
  • Finally, at the heart of it, Darktrace’s innovation was highlighted in relation to its intrinsic Self Learning AI, utilizing multiple layers of deep learning, neural networks, LLMs, NLP, Generative AI and more to understand network activity and filter it for what’s critical on an individual customer level.

Going beyond reactive security

Darktrace’s visibility and AI-enabled detection, investigation and response enable security teams to focus on hardening gaps in their network through contextual relevance & priority. Darktrace / NETWORK explicitly gives time back to security teams allowing them to focus on the bigger strategic and governance workflows that sometimes get overlooked. This is enabled through proactive solutions intrinsically connected to our NDR:

  • Darktrace / Proactive Exposure Management, which looks beyond just CVE risks to instead discover, prioritize and validate risks by business impact and how to mobilize against them early, to reduce the number of real threats security teams face.
  • Darktrace / Incident Readiness & Recovery, a solution rather than service-based approach to incident response (IR) that lets teams respond in the best way to each incident and proactively test their familiarity and effectiveness of IR workflows with sophisticated incident simulations involving their own analysts and assets.

Together, these solutions allow Darktrace / NETWORK to go beyond the traditional NDR and shift teams to a more hardened and proactive state.

Putting customers first

Customers continue to sit at the forefront of Darktrace R&D, with their emerging needs and pain points being the direct inspiration for our continued innovation.

This year Darktrace / NETWORK has protected thousands of customers against the latest attacks, from data exfil and destruction, to unapproved privilege escalation and ransomware including strains like Medusa, Qilin and AlphV BlackCat.

In each instance, Darktrace / NETWORK was able to provide a holistic lens of the anomalies present in their traffic, collated those that were important, and either responded or gave teams the ability to take targeted actions against their threats – even when adversaries pivoted. In one example of a Gootloader compromise, Darktrace ensured a SOC went from detection to recovery within 5 days, 92.8% faster than the average containment time of 69 days.

Results like these, focused on user-led security, have secured Darktrace’s position within the latest NDR Leadership Compass.

To find out more about what makes Darktrace / NETWORK special, read the full KuppingerCole report.

References

[1] Osman Celik, KuppingerCole Leadership Compass:Network Detection and Response (2024)

[2] Darktrace's AI Analyst customer fleet data

[3] https://www.ibm.com/reports/data-breach

Continue reading
About the author
Gabriel Few-Wiegratz
Product Marketing Manager

Blog

/

November 18, 2024

/

Inside the SOC

From Royal to BlackSuit: Understanding the Tactics and Impact of a Sophisticated Ransomware Strain

Default blog imageDefault blog image

What is BlackSuit Ransomware?

Since late 2023, Darktrace has detected BlackSuit ransomware infiltrating multiple customer networks in the US. This ransomware has targeted a wide range of industries, including arts, entertainment, real estate, public administration, defense, and social security.

Emerging in May 2023, BlackSuit is believed to be a spinoff of Royal ransomware due to similarities in code and Conti, and most likely consists of Russian and Eastern European hackers [1]. Recorded Future reported that the ransomware had affected 95 organizations worldwide, though the actual number is likely much higher [2]. While BlackSuit does not appear to focus on any particular sector, it has targeted multiple organizations in the healthcare, education, IT, government, retail and manufacturing industries [3]. Employing double extortion tactics, BlackSuit not only encrypts files but also steals sensitive data to leverage ransom payments.

BlackSuit has demanded over USD 500 million in ransoms, with the highest individual demand reaching USD 60 million [4]. Notable targets include CDK Global, Japanese media conglomerate Kadokawa, multiple educational institutions, Octapharma Plasma, and the government of Brazil [5][6][7][8].

Darktrace’s Coverage of BlackSuit Ransomware Attack

Case 1, November 2023

The earliest attack on a Darktrace customer by BlackSuit was detected at the start of November 2023. The unusual network activity began on a weekend—a time commonly chosen by ransomware groups to increase their chances of success, as many security teams operate with reduced staff. Darktrace identified indicators of the attackers’ presence on the network for almost two weeks, during which a total of 15 devices exhibited suspicious behavior.

The attack commenced with unusual internal SMB (Server Message Block) connections using a compromised service account. An internal device uploaded an executable (zzza.exe) to a domain controller (DC) and shortly after, wrote a script (socks5.ps1) to another device. According to a Cybersecurity Advisory from the CISA (Cybersecurity and Infrastructure Security Agency, US), the script file was a PowerShell reverse proxy [9].

Approximately an hour and a half later, the device to which the script was written exhibited uncommon WMI (Windows Management Instrumentation) activity. Two hours after receiving the executable file, the DC was observed making an outgoing NTLM request, using PowerShell to remotely execute commands, distributing differently named executable files (<PART OF THE CUSTOMER’S NAME>.exe), and controlling services on other devices.

Eighteen hours after the start of the unusual activity, Darktrace detected another device making repeated connections to “mystuff.bublup[.]com”, which the aforementioned CISA Advisory identifies as a domain used by BlackSuit for data exfiltration [9].

About ten minutes after the suspicious executables were distributed across the network, and less than 24 hours after the start of the unusual activity, file encryption began. A total of ten devices were seen appending the “.blacksuit” extension to files saved on other devices using SMB, as well as writing ransom notes (readme.blacksuit.txt). The file encryption lasted less than 20 minutes.

 An example of the contents of a BlackSuit ransom note being written over SMB.
Figure 1: An example of the contents of a BlackSuit ransom note being written over SMB.

During this compromise, external connections to endpoints related to ConnectWise’s ScreenConnect remote management tool were also seen from multiple servers, suggesting that the tool was likely being abused for command-and-control (C2) activity. Darktrace identified anomalous connectivity associated with ScreenConnect was seen up to 11 days after the start of the attack.

10 days after the start of the compromise, an account belonging to a manager was detected adding “.blacksuit” extensions to the customer’s Software-a-Service (SaaS) resources while connecting from 173.251.109[.]106. Six minutes after file encryption began, Darktrace flagged the unusual activity and recommended a block. However, since Autonomous Response mode was not enabled, the customer’s security team needed to manually confirm the action. Consequently, suspicious activity continued for about a week after the initial encryption. This included disabling authentication on the account and an unusual Teams session initiated from the suspicious external endpoint 216.151.180[.]147.

Case 2, February 2024

Another BlackSuit compromise occurred at the start of February 2024, when Darktrace identified approximately 50 devices exhibiting ransomware-related activity in another US customer’s environment. Further investigation revealed that a significant number of additional devices had also been compromised. These devices were outside Darktrace’s purview to the customer’s specific deployment configuration. The threat actors managed to exfiltrate around 4 TB of data.

Initial access to the network was gained via a virtual private network (VPN) compromise in January 2024, when suspicious connections from a Romanian IP address were detected. According to CISA, the BlackSuit group often utilizes the services of initial access brokers (IAB)—actors who specialize in infiltrating networks, such as through VPNs, and then selling that unauthorized access to other threat actors [9]. Other initial access vectors include phishing emails, RDP (Remote Desktop Protocol) compromise, and exploitation of vulnerable public-facing applications.

Similar to the first case, the file encryption began at the end of the working week. During this phase of the attack, affected devices were observed encrypting files on other internal devices using two compromised administrator accounts. The encryption activity lasted for approximately six and a half hours. Multiple alerts were sent to the customer from Darktrace’s Security Operations Centre (SOC) team, who began reviewing the activity within four minutes of the start of the file encryption.

Darktrace’s Cyber AI Analyst clustering together multiple events related to unusual activity on the network, including file encryption over SMB by BlackSuit.
Figure 2: Darktrace’s Cyber AI Analyst clustering together multiple events related to unusual activity on the network, including file encryption over SMB by BlackSuit.
Figure 3: A spike in model alerts on the day when file encryption by BlackSuit was observed in the network.

In this case, the threat actor utilized SystemBC proxy malware for command and control (C2). A domain controller (DC) was seen connecting to 137.220.61[.]94 on the same day the file encryption took place. The DC was also observed connecting to a ProxyScrape domain around the same time, which is related to the SOCKS5 protocol used by SystemBC. During this compromise, RDP, SSH, and SMB were used for lateral movement within the network.

Figure 4: A Cyber AI Analyst investigation alerting to a device on the VPN subnet making suspicious internal SSH connections due to malicious actors moving laterally within the network.

Signs of threat actors potentially being on the network were observed as early as two days prior to the file encryption. This included unusual internal network scanning via multiple protocols (ICMP, SMB, RDP, etc.), credential brute-forcing, SMB access failures, and anonymous SMBv1 sessions. These activities were traced to IP addresses belonging to two desktop devices in the VPN subnet associated with two regular employee user accounts. Threat actors were seemingly able to exploit at least one of these accounts due to LDAP legacy policies being in place on the customer’s environment.

A Cyber AI Analyst incident summary alerting to a device on the VPN subnet conducting internal reconnaissance.
Figure 5: A Cyber AI Analyst incident summary alerting to a device on the VPN subnet conducting internal reconnaissance.
Examples of the proposed Darktrace Autonomous Response actions on the day BlackSuit initiated file encryption.
Figure 6: Examples of the proposed Darktrace Autonomous Response actions on the day BlackSuit initiated file encryption.

Case 3, August 2024

The most recently observed BlackSuit compromise occurred in August 2024, when a device was observed attempting to brute-force the credentials of an IT administrator. This activity continued for 11 days.

Once the admin’s account was successfully compromised, network scanning, unusual WMI, and SAMR (Security Account Manager Remote protocol) activity followed. A spike in the use of this account was detected on a Sunday—once again, the attackers seemingly targeting the weekend—when the account was used by nearly 50 different devices.

The compromised admin’s account was exploited for data gathering via SMB, resulting in the movement of 200 GB of data between internal devices in preparation for exfiltration. The files were then archived using the naming convention “*.part<number>.rar”.

Around the same time, Darktrace observed data transfers from 19 internal devices to “bublup-media-production.s3.amazonaws[.]com,” totaling just over 200 GB—the same volume of data gathered internally. Connections to other Bublup domains were also detected. The internal data download and external data transfer activity took approximately 8-9 hours.

Unfortunately, Darktrace was not configured in Autonomous Response mode at the time of the attack, meaning any mitigative actions to stop the data gathering or exfiltration required human confirmation.  

One of the compromised devices was seen sending 80 GB of data to bublup-media-production.s3.amazonaws[.]com within a span of 4 hours.
Figure 7: One of the compromised devices was seen sending 80 GB of data to bublup-media-production.s3.amazonaws[.]com within a span of 4 hours.

Once the information was stolen, the threat actor moved on to the final stage of the attack—file encryption. Five internal devices, using either the compromised admin account or connecting via anonymous SMBv1 sessions, were seen encrypting files and writing ransom notes to five other devices on the network. The attempts at file encryption continued for around two hours, but Darktrace’s Autonomous Response capability was able to block the activity and prevent the attack from escalating.

Conclusion

The persistent and evolving threat posed by ransomware like BlackSuit underscores the critical importance of robust cybersecurity measures across all sectors. Since its emergence in 2023, BlackSuit has demonstrated a sophisticated approach to infiltrating networks, leveraging double extortion tactics, and demanding substantial ransoms. The cases highlighted above illustrate the varied methods and persistence of BlackSuit attackers, from exploiting VPN vulnerabilities to abusing remote management tools and targeting off-hours to maximize impact.

Although many similar connection patterns, such as the abuse of Bublup services for data exfiltration or the use of SOCKS5 proxies for C2, were observed during cases investigated by Darktrace, BlackSuit actors are highly sophisticated and tailors their attacks to each target organization. The consequences of a successful attack can be highly disruptive, and remediation efforts can be time-consuming and costly. This includes taking the entire network offline while responding to the incident, restoring encrypted files from backups (if available), dealing with damage to the organization’s reputation, and potential lawsuits.

These BlackSuit ransomware incidents emphasize the need for continuous vigilance, timely updates to security protocols, and the adoption of autonomous response technologies to swiftly counteract such attacks. As ransomware tactics continue to evolve, organizations must remain agile and informed to protect their critical assets and data. By learning from these incidents and enhancing their cybersecurity frameworks, organizations can better defend against the relentless threat of ransomware and ensure the resilience of their operations in an increasingly digital world.

Credit to Signe Zaharka (Principal Cyber Analyst) and Adam Potter (Senior Cyber Analyst)

Insights from Darktrace’s First 6: Half-year threat report for 2024

First 6: half year threat report darktrace screenshot

Darktrace’s First 6: Half-Year Threat Report 2024 highlights the latest attack trends and key threats observed by the Darktrace Threat Research team in the first six months of 2024.

  • Focuses on anomaly detection and behavioral analysis to identify threats
  • Maps mitigated cases to known, publicly attributed threats for deeper context
  • Offers guidance on improving security posture to defend against persistent threats

Appendices

Darktrace Model Detections

Anomalous Connection / Data Sent to Rare Domain

Anomalous Connection / High Volume of New or Uncommon Service Control

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / Rare WinRM Outgoing

Anomalous Connection / SMB Enumeration

Anomalous Connection / Suspicious Activity On High Risk Device

Anomalous Connection / Suspicious Read Write Ratio

Anomalous Connection / Suspicious Read Write Ratio and Unusual SMB

Anomalous Connection / Sustained MIME Type Conversion

Anomalous Connection / Uncommon 1 GiB Outbound

Anomalous Connection / Unusual Admin SMB Session

Anomalous File / Internal / Additional Extension Appended to SMB File

Anomalous File / Internal / Executable Uploaded to DC

Anomalous File / Internal / Unusual SMB Script Write

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Anomalous Server Activity / Outgoing from Server

Anomalous Server Activity / Rare External from Server

Anomalous Server Activity / Write to Network Accessible WebRoot

Compliance / Outgoing NTLM Request from DC

Compliance / Remote Management Tool On Server

Compliance / SMB Drive Write

Compromise / Beacon to Young Endpoint

Compromise / Beaconing Activity To External Rare

Compromise / Ransomware / Possible Ransom Note Read

Compromise / Ransomware / Possible Ransom Note Write

Compromise / Ransomware / SMB Reads then Writes with Additional Extensions

Compromise / Ransomware / Suspicious SMB Activity

Device / Anomalous RDP Followed By Multiple Model Breaches

Device / EXE Files Distributed to Multiple Devices

Device / Internet Facing Device with High Priority Alert

Device / Large Number of Model Breaches

Device / Large Number of Model Breaches from Critical Network Device

Device / Multiple Lateral Movement Model Breaches

Device / Network Scan

Device / New or Uncommon WMI Activity

Device / New or Unusual Remote Command Execution

Device / New User Agent To Internal Server

Device / SMB Lateral Movement

Device / SMB Session Brute Force (Admin)

Device / Suspicious SMB Scanning Activity

Device / Unusual LDAP Query For Domain Admins

SaaS / Access / Teams Activity from Rare Endpoint

SaaS / Resource / SaaS Resources With Additional Extensions

SaaS / Unusual Activity / Disabled Strong Authentication

SaaS / Unusual Activity / Multiple Unusual SaaS Activity Scores

SaaS / Unusual Activity / Unusual SaaS Activity Score

SaaS / Unusual Activity / Unusual Volume of SaaS Modifications

Unusual Activity / Anomalous SMB Delete Volume

Unusual Activity / Anomalous SMB Move & Write

Unusual Activity / High Volume Client Data Transfer

Unusual Activity / High Volume Server Data Transfer

Unusual Activity / Internal Data Transfer

Unusual Activity / SMB Access Failures

Unusual Activity / Sustained Anomalous SMB Activity

Unusual Activity / Unusual External Data to New Endpoint

User / New Admin Credentials on Client

User / New Admin Credentials on Server

User/ Kerberos Password Bruteforce

Autonomous Response Models

Antigena / Network / External Threat / Antigena File then New Outbound Block

Antigena / Network / External Threat / Antigena Ransomware Block

Antigena / Network / External Threat / Antigena Suspicious Activity Block

Antigena / Network / External Threat / SMB Ratio Antigena Block

Antigena / Network / Insider Threat / Antigena Internal Anomalous File Activity

Antigena / Network / Insider Threat / Antigena Internal Data Transfer Block

Antigena / Network / Insider Threat / Antigena Large Data Volume Outbound Block

Antigena / Network / Insider Threat / Antigena Network Scan Block

Antigena / Network / Insider Threat / Antigena Unusual Privileged User Activities Block

Antigena / Network / Insider Threat / Antigena Unusual Privileged User Activities Pattern of Life Block

Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Antigena / Network / Significant Anomaly / Repeated Antigena Breaches

Antigena / SaaS / Antigena Unusual Activity Block

List of Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

.blacksuit - File extension – When encrypting the files, this extension is appended to the filename – High

readme.blacksuit.txt – ransom note - A file demanding cryptocurrency payment in exchange for decrypting the victim's files and not leaking the stolen data – High

mystuff.bublup[.]com, bublup-media-production.s3.amazonaws[.]com – data exfiltration domains related to an organization and project management app that has document sharing functionality – High

137.220.61[.]94:4001 – SystemBC C2 related IP address (this tool is often used by other ransomware groups as well) - Medium

173.251.109[.]106 – IP address seen during a SaaS BlackSuit compromise (during file encryption) – Medium

216.151.180[.]147 – IP address seen during a SaaS BlackSuit compromise (during an unusual Teams session) - Medium

MITRE ATT&CK Mapping

Tactic - Technqiue

Account Manipulation - PERSISTENCE - T1098

Alarm Suppression - INHIBIT RESPONSE FUNCTION - T0878

Application Layer Protocol - COMMAND AND CONTROL - T1071

Automated Collection - COLLECTION - T1119

Block Command Message - INHIBIT RESPONSE FUNCTION - T0803

Block Reporting Message - INHIBIT RESPONSE FUNCTION - T0804

Browser Extensions - PERSISTENCE - T1176

Brute Force I/O - IMPAIR PROCESS CONTROL - T0806

Brute Force - CREDENTIAL ACCESS - T1110

Client Configurations - RECONNAISSANCE - T1592.004 - T1592

Cloud Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078.004 - T1078

Data Destruction - IMPACT - T1485

Data Destruction - INHIBIT RESPONSE FUNCTION - T0809

Data Encrypted for Impact - IMPACT - T1486

Data from Cloud Storage Object - COLLECTION - T1530

Data Staged - COLLECTION - T1074

Domain Groups - DISCOVERY - T1069.002 - T1069

Email Collection - COLLECTION - T1114

Exfiltration Over C2 Channel - EXFILTRATION - T1041

Exfiltration to Cloud Storage - EXFILTRATION - T1567.002 - T1567

Exploit Public - Facing Application - INITIAL ACCESS - T1190

Exploitation for Privilege Escalation - PRIVILEGE ESCALATION - T0890

Exploitation of Remote Services - LATERAL MOVEMENT - T1210

File and Directory Discovery - DISCOVERY - T1083

File Deletion - DEFENSE EVASION - T1070.004 - T1070

IP Addresses - RECONNAISSANCE - T1590.005 - T1590

Lateral Tool Transfer - LATERAL MOVEMENT - T1570

LLMNR/NBT - NS Poisoning and SMB Relay - CREDENTIAL ACCESS, COLLECTION - T1557.001 - T1557

Modify Alarm Settings - INHIBIT RESPONSE FUNCTION - T0838

Modify Control Logic - IMPAIR PROCESS CONTROL, INHIBIT RESPONSE FUNCTION - T0833

Modify Parameter - IMPAIR PROCESS CONTROL - T0836

Network Service Scanning - DISCOVERY - T1046

Network Share Discovery - DISCOVERY - T1135

Pass the Hash - DEFENSE EVASION, LATERAL MOVEMENT - T1550.002 - T1550

RDP Hijacking - LATERAL MOVEMENT - T1563.002 - T1563

Remote Access Software - COMMAND AND CONTROL - T1219

Remote Desktop Protocol - LATERAL MOVEMENT - T1021.001 - T1021

Remote System Discovery - DISCOVERY - T1018

Rename System Utilities - DEFENSE EVASION - T1036.003 - T1036

Scanning IP Blocks - RECONNAISSANCE - T1595.001 - T1595

Scheduled Transfer - EXFILTRATION - T1029

Service Execution - EXECUTION - T1569.002 - T1569

Service Stop - IMPACT - T1489

SMB/Windows Admin Shares - LATERAL MOVEMENT - T1021.002 - T1021

Stored Data Manipulation - IMPACT - T1565.001 - T1565

Taint Shared Content - LATERAL MOVEMENT - T1080

Valid Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078

Vulnerability Scanning - RECONNAISSANCE - T1595.002 - T1595

Web Protocols - COMMAND AND CONTROL - T1071.001 - T1071

Web Services - RESOURCE DEVELOPMENT - T1583.006 - T1583

Web Shell - PERSISTENCE - T1505.003 - T1505

Windows Management Instrumentation - EXECUTION - T1047

Windows Remote Management - LATERAL MOVEMENT - T1021.006 - T1021

References

1.     https://www.trendmicro.com/en_us/research/23/e/investigating-blacksuit-ransomwares-similarities-to-royal.html

2.     https://www.reuters.com/technology/cybersecurity/blacksuit-hacker-behind-cdk-global-attack-hitting-us-car-dealers-2024-06-27/

3.     https://www.sentinelone.com/anthology/blacksuit/

4.     https://thehackernews.com/2024/08/fbi-and-cisa-warn-of-blacksuit.html

5.     https://www.techtarget.com/whatis/feature/The-CDK-Global-outage-Explaining-how-it-happened

6.     https://therecord.media/japanese-media-kadokawa-investigating-cyber

7.     https://therecord.media/plasma-donation-company-cyberattack-blacksuit

8.     https://thecyberexpress.com/government-of-brazil-cyberattack-by-blacksuit/

9.     https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-061a

Continue reading
About the author
Signe Zaharka
Senior Cyber Security Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI