Blog
/
/
February 9, 2022

The Impact of Conti Ransomware on OT Systems

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Feb 2022
Learn how ransomware can spread throughout converged IT/OT environments, and how Self-Learning AI empowers organizations to contain these threats.

Ransomware has taken the world by storm, and IT is not the only technology affected. Operational Technology (OT), which is increasingly blending with IT, is also susceptible to ransomware tactics, techniques, and procedures (TTPs). And when ransomware strikes OT, the effects have the potential to be devastating.

Here, we will look at a ransomware attack that spread from IT to OT systems. The attack was detected by Darktrace AI.

This threat find demonstrates a use case of Darktrace’s technology that delivers immense value to organizations with OT: spotting and stopping ransomware at its earliest stages, before the damage is done. This is particularly helpful for organizations with interconnected enterprise and industrial environments, as it means:

  1. Emerging attacks can be contained in IT before they spread laterally into OT, and even before they spread from device to device in IT;
  2. Organizations gain granular visibility into their industrial environments, detecting deviations from normal activity, and quick identification of remediating actions.

Threat find: Ransomware and crypto-mining hijack affecting IT and OT systems

Darktrace recently identified an aggressive attack targeting an OT R&D investment firm in EMEA. The attack originally started as a crypto-mining campaign and later evolved into ransomware. This organization deployed Darktrace in a digital estate containing both IT and OT assets that spanned over 3,000 devices.

If the organization had deployed Darktrace’s Autonomous Response technology in active mode, this threat would have been stopped in its earliest stages. Even in the absence of Autonomous Response, however, mere human attention would have stopped this attack’s progression. Darktrace’s Self-Learning AI gave clear indications of an ongoing compromise in the month prior to the detonation of ransomware. In this case, however, the security team was not monitoring Darktrace’s interface, and so the attack was allowed to proceed.

Compromised OT devices

This threat find will focus on the attack techniques used to take over two OT devices, specifically, a HMI (human machine interface), and an ICS Historian used to collect and log industrial data. These OT devices were both VMware virtual machines running Windows OS, and were compromised as part of a wider Conti ransomware infection. Both devices were being used primarily within an industrial control system (ICS), running a popular ICS software package and making regular connections to an industrial cloud platform.

These devices were thus part of an ICSaaS (ICS-as-a-Service) environment, using virtualised and Cloud platforms to run analytics, update threat intelligence, and control the industrial process. As previously highlighted by Darktrace, the convergence of cloud and ICS increases a network’s attack surface and amplifies cyber risk.

Attack lifecycle

Opening stages

The initial infection of the OT devices occurred when a compromised Domain Controller (DC) made unusual Active Directory requests. The devices made subsequent DCE-RPC binds for epmapper, often used by attackers for command execution, and lsarpc, used by attackers to abuse authentication policies and escalate privileges.

The payload was delivered when the OT devices used SMB to connect to the sysvol folder on the DC and read a malicious executable file, called SetupPrep.exe.

Figure 1: Darktrace model breaches across the whole network from initial infection on October 21 to the detonation on November 15.

Figure 2: ICS reads on the HMI in the lead up, during, and following detonation of the ransomware.

Device encryption and lateral spread

The malicious payload remained dormant on the OT devices for three weeks. It seems the attacker used the time to install crypto-mining malware elsewhere on the network and consolidate their foothold.

On the day the ransomware detonated, the attacker used remote management tools to initiate encryption. The PSEXEC tool was used on an infected server (separate from the original DC) to remotely execute malicious .dll files on the compromised OT devices.

The devices then attempted to make command and control (C2) connections to rare external endpoints using suspicious ports. Like in many ICS networks, sufficient network segregation had been implemented to prevent the HMI device from making successful connections to the Internet and the C2 communications failed. But worryingly, the failed C2 did not prevent the attack from proceeding or the ransomware from detonating.

The Historian device made successful C2 connections to around 40 unique external endpoints. Darktrace detected beaconing-type behavior over suspicious TCP/SSL ports including 465, 995, 2078, and 2222. The connections were made to rare destination IP addresses that did not specify the Server Name Indication (SNI) extension hostname and used self-signed and/or expired SSL certificates.

Both devices enumerated network SMB shares and wrote suspicious shell scripts to network servers. Finally, the devices used SMB to encrypt files stored in network shares, adding a file extension which is likely to be unique to this victim and which will be called ABCXX for the purpose of this blog. Most encrypted files were uploaded to the folder in which the file was originally located, but in some instances were moved to the images folder.

During the encryption, the device was using the machine account to authenticate SMB sessions. This is in contrast to other ransomware incidents that Darktrace has observed, in which admin or service accounts are compromised and abused by the attacker. It is possible that in this instance the attacker was able to use ‘Living off the Land’ techniques (for example the use of lsarpc pipe) to give the machine account admin privileges.

Examples of files being encrypted and moved:

  • SMB move success
  • File: new\spbr0007\0000006A.bak
  • Renamed: new\spbr0007\0000006A.bak.ABCXX
  • SMB move success
  • File: ActiveMQ\readme.txt
  • Renamed: Images\10j0076kS1UA8U975GC2e6IY.488431411265952821382.png.ABCXX

Detonation of ransomware

Upon detonation, the ransomware note readme.txt was written by the ICS to targeted devices as part of the encryption activity.

The final model breached by the device was “Unresponsive ICS Device” as the device either stopped working due to the effects of the ransomware, or was removed from the network.

Figure 3: abc-histdev — external connections filtered on destination port 995 shows C2 connections starting around one hour before encryption began.

How the attack bypassed the rest of the security stack

In this threat find, there were a number of factors which resulted in the OT devices becoming compromised.

The first is IT/OT convergence. The ICS network was insufficiently segregated from the corporate network. This means that devices could be accessed by the compromised DC during the lateral movement stage of the attack. As OT becomes more reliant on IT, ensuring sufficient segregation is in place, or that an attacker can not circumvent such segregation, is becoming an ever increasing challenge for security teams.

Another reason is that the attacker used attack methods which leverage Living off the Land techniques to compromise devices with no discrimination as to whether they were part of an IT or OT network. Many of the machines used to operate ICS networks, including the devices highlighted here, rely on operating systems vulnerable to the kinds of TTPs observed here and that are regularly employed by ransomware groups.

Darktrace insights

Darktrace’s Cyber AI Analyst was able to stitch together many disparate forms of unusual activity across the compromised devices to give a clear security narrative containing details of the attack. The incident report for the Historian server is shown below. This provides a clear illustration of how Cyber AI Analyst can close any skills or communication gap between IT and OT specialists.

Figure 4: Cyber AI Analyst of the Historian server (abc-histdev). It investigated and reported the C2 communication (step 2) that started just before network reconnaissance using TCP scanning (step 3) and the subsequent file encryption over SMB (step 4).

In total, the attacker’s dwell time within the digital estate was 25 days. Unfortunately, it lead to disruption to operational technology, file encryption and financial loss. Altogether, 36 devices were crypto-mining for over 20 days – followed by nearly 100 devices (IT and OT) becoming encrypted following the detonation of the ransomware.

If it were active, Autonomous Response would have neutralized this activity, containing the damage before it could escalate into crisis. Darktrace’s Self-Learning AI gave clear indications of an ongoing compromise in the month prior to the detonation of ransomware, and so any degree of human attention toward Darktrace’s revelations would have stopped the attack.

Autonomous Response is highly configurable, and so, in industrial environments — whether air-gapped OT or converged IT/OT ecosystems — Antigena can be deployed in a variety of manners. In human confirmation mode, human operators need to give the green light before the AI takes action. Antigena can also be deployed only in the higher levels of the Purdue model, or the “IT in OT,” protecting the core assets from fast-moving attacks like ransomware.

Ransomware and interconnected IT/OT systems

ICS networks are often operated by machines that rely on operating systems which can be affected by TTPs regularly employed by ransomware groups — that is, TTPs such as Living off the Land, which do not discriminate between IT and OT.

The threat that ransomware poses to organizations with OT, including critical infrastructure, is so severe that the Cyber Infrastructure and Security Agency (CISA) released a fact sheet concerning these threats in the summer of 2021, noting the risk that IT attacks pose to OT networks:

“OT components are often connected to information technology (IT) networks, providing a path for cyber actors to pivot from IT to OT networks… As demonstrated by recent cyber incidents, intrusions affecting IT networks can also affect critical operational processes even if the intrusion does not directly impact an OT network.”

Major ransomware attacks against the Colonial Pipeline and JBS Foods demonstrate the potential for ransomware affecting OT to cause severe economic disruption on a national and international scale. And ransomware can wreak havoc on OT systems regardless of whether they directly target OT systems.

As industrial environments continue to converge and evolve — be they IT/OT, ICSaaS, or simply poorly segregated legacy systems — Darktrace stands ready to contain attacks before the damage is done. It is time for organizations with industrial environments to take the quantum leap forward that Darktrace’s Self-Learning AI is uniquely positioned to provide.

Thanks to Darktrace analysts Ash Brice and Andras Balogh for their insights on the above threat find.

Discover more on how Darktrace protects OT environments from ransomware

Darktrace model detections

HMI in chronological order at time of detonation:

  • Anomalous Connection / SMB Enumeration
  • Anomalous File / Internal / Unusual SMB Script Write
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Compromise / Ransomware / Suspicious SMB Activity [Enhanced Monitoring]
  • ICS / Unusual Data Transfer By OT Device
  • ICS / Unusual Unresponsive ICS Device

Historian

  • ICS / Rare External from OT Device
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • ICS / Unusual Activity From OT Device
  • Anomalous Connection / SMB Enumeration
  • Anomalous Connection / Suspicious Activity On High Risk Device
  • Unusual Activity / SMB Access Failures
  • Device / Large Number of Model Breaches
  • ICS / Unusual Data Transfer By OT Device
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Device / SMB Lateral Movement
  • Compromise / Ransomware / Suspicious SMB Activity [Enhanced Monitoring]
  • Device / Multiple Lateral Movement Model Breaches [Enhanced Monitoring]

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Oakley Cox
Director of Product

Oakley is a Product Manager within the Darktrace R&D team. He collaborates with global customers, including all critical infrastructure sectors and Government agencies, to ensure Darktrace/OT remains the first in class solution for OT Cyber Security. He draws on 7 years’ experience as a Cyber Security Consultant to organizations across EMEA, APAC and ANZ. His research into cyber-physical security has been published by Cyber Security journals and by CISA. Oakley has a Doctorate (PhD) from the University of Oxford.

Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

Network

/

February 19, 2025

Darktrace Releases Annual 2024 Threat Insights

Default blog imageDefault blog image

Introduction: Darktrace’s threat research

Defenders must understand the threat landscape in order to protect against it. They can do that with threat intelligence.

Darktrace approaches threat intelligence with a unique perspective. Unlike traditional security vendors that rely on established patterns from past incidents, it uses a strategy that is rooted in the belief that identifying behavioral anomalies is crucial for identifying both known and novel threats.

For Darktrace analysts and researchers, the incidents detected by the AI solution mark the beginning of a deeper investigation, aiming to connect mitigated threats to wider trends from across the threat landscape. Through hindsight analysis, the Darktrace Threat Research team has highlighted numerous threats, including zero-day, n-day, and other novel attacks, showcasing their evolving nature and Darktrace’s ability to identify them.

In 2024, the Threat Research team observed major trends around vulnerabilities in internet-facing systems, new and re-emerging ransomware strains, and sophisticated email attacks. Read on to discover some of our key insights into the current cybersecurity threat landscape.

Multiple campaigns target vulnerabilities in internet-facing systems

It is increasingly common for threat actors to identify and exploit newly discovered vulnerabilities in widely used services and applications, and in some cases, these vulnerability exploitations occur within hours of disclosure.

In 2024, the most significant campaigns observed involved the ongoing exploitation of zero-day and n-day vulnerabilities in edge and perimeter network technologies. In fact, in the first half of the year, 40% of all identified campaign activity came from the exploitation of internet-facing devices. Some of the most common exploitations involved Ivanti Connect Secure (CS) and Ivanti Policy Secure (PS) appliances, Palo Alto Network (PAN-OS) firewall devices, and Fortinet appliances.

Darktrace helps security teams identify suspicious behavior quickly, as demonstrated with the critical vulnerability in PAN-OS firewall devices. The vulnerability was publicly disclosed on April 11, 2024, yet with anomaly-based detection, Darktrace’s Threat Research team was able to identify a range of suspicious behavior related to exploitation of this vulnerability, including command-and-control (C2) connectivity, data exfiltration, and brute-forcing activity, as early as March 26.

That means that Darktrace and our Threat Research team detected this Common Vulnerabilities and Exposure (CVE) exploitation 16 days before the vulnerability was disclosed. Addressing critical vulnerabilities quickly massively benefits security, as teams can reduce their effectiveness by slowing malicious operations and forcing attackers to pursue more costly and time-consuming methods.

Persistent ransomware threats continue to evolve

The continued adoption of the Ransomware-as-a-Service (RaaS) model provides even less experienced threat actors with the tools needed to carry out disruptive attacks, significantly lowering the barrier to entry.

The Threat Research team tracked both novel and re-emerging strains of ransomware across the customer fleet, including Akira, LockBit, and Lynx. Within these ransomware attempts and incidents, there were notable trends in attackers’ techniques: using phishing emails as an attack vector, exploiting legitimate tools to mask C2 communication, and exfiltrating data to cloud storage services.

Read the Annual 2024 Threat Report for the complete list of prominent ransomware actors and their commonly used techniques.

Onslaught of email threats continues

With a majority of attacks originating from email, it is crucial that organizations secure the inboxes and beyond.

Between December 21, 2023, and December 18, 2024, Darktrace / EMAIL detected over 30.4 million phishing emails across the fleet. Of these, 70% successfully bypassed Domain-based Message Authentication, Reporting, and Conformance (DMARC) verification checks and 55% passed through all other existing layers of customer email security.

The abuse of legitimate services and senders continued to be a significant method for threat actors throughout 2024. By leveraging trusted platforms and domains, malicious actors can bypass traditional security measures and increase the likelihood of their phishing attempts being successful.

This past year, there was a substantial use of legitimately authenticated senders and previously established domains, with 96% of phishing emails detected by Darktrace / EMAIL utilizing existing domains rather than registering new ones.

These are not the only types of email attacks we observed. Darktrace detected over 2.7 million emails with multistage payloads.

While most traditional cybersecurity solutions struggle to cover multiple vectors and recognize each stage of complex attacks as part of wider malicious activity, Darktrace can detect and respond across email, identities, network, and cloud.

Conclusion

The Darktrace Threat Research team continues to monitor the ever-evolving threat landscape. Major patterns over the last year have revealed the importance of fast-acting, anomaly-based detection like Darktrace provides.

For example, response speed is essential when campaigns target vulnerabilities in internet-facing systems, and these vulnerabilities can be exploited by attackers within hours of their disclosure if not even before that.

Similarly, anomaly-based detection can identify hard to find threats like ransomware attacks that increasingly use living-off-the-land techniques and legitimate tools to hide malicious activity. A similar pattern can be found in the realm of email security, where attacks are also getting harder to spot, especially as they frequently exploit trusted senders, use redirects via legitimate services, and craft attacks that bypass DMARC and other layers of email security.

As attacks appear with greater complexity, speed, and camouflage, defenders must have timely detection and containment capabilities to handle all emerging threats. These hard-to-spot attacks can be identified and stopped by Darktrace.

Download the full report

Discover the latest threat landscape trends and recommendations from the Darktrace Threat Research team.

Continue reading
About the author
The Darktrace Threat Research Team

Blog

/

OT

/

February 18, 2025

Unifying IT & OT With AI-Led Investigations for Industrial Security

Default blog imageDefault blog image

As industrial environments modernize, IT and OT networks are converging to improve efficiency, but this connectivity also creates new attack paths. Previously isolated OT systems are now linked to IT and cloud assets, making them more accessible to attackers.

While organizations have traditionally relied on air gaps, firewalls, data diodes, and access controls to separate IT and OT, these measures alone aren’t enough. Threat actors often infiltrate IT/Enterprise networks first then exploit segmentation, compromising credentials, or shared IT/OT systems to move laterally, escalate privileges, and ultimately enter the OT network.

To defend against these threats, organizations must first ensure they have complete visibility across IT and OT environments.

Visibility: The first piece of the puzzle

Visibility is the foundation of effective industrial cybersecurity, but it’s only the first step. Without visibility across both IT and OT, security teams risk missing key alerts that indicate a threat targeting OT at their earliest stages.

For Attacks targeting OT, early stage exploits often originate in IT environments, adversaries perform internal reconnaissance among other tactics and procedures but then laterally move into OT first affecting IT devices, servers and workstations within the OT network. If visibility is limited, these threats go undetected. To stay ahead of attackers, organizations need full-spectrum visibility that connects IT and OT security, ensuring no early warning signs are missed.

However, visibility alone isn’t enough. More visibility also means more alerts, this doesn’t just make it harder to separate real threats from routine activity, but bogs down analysts who have to investigate all these alerts to determine their criticality.

Investigations: The real bottleneck

While visibility is essential, it also introduces a new challenge: Alert fatigue. Without the right tools, analysts are often occupied investigating alerts with little to no context, forcing them to manually piece together information and determine if an attack is unfolding. This slows response times and increases the risk of missing critical threats.

Figure 1: Example ICS attack scenario

With siloed visibility across IT and OT each of these events shown above would be individually alerted by a detection engine with little to no context nor correlation. Thus, an analyst would have to try to piece together these events manually. Traditional security tools struggle to keep pace with the sophistication of these threats, resulting in an alarming statistic: less than 10% of alerts are thoroughly vetted, leaving organizations vulnerable to undetected breaches. As a result, incidents inevitably follow.

Darktrace’s Cyber AI Analyst uses AI-led investigations to improve workflows for analysts by automatically correlating alerts wherever they occur across both IT and OT. The multi-layered AI engine identifies high-priority incidents, and provides analysts with clear, actionable insights, reducing noise and highlighting meaningful threats. The AI significantly alleviates workloads, enabling teams to respond faster and more effectively before an attack escalates.

Overcoming organizational challenges across IT and OT

Beyond technical challenges like visibility and alert management, organizational dynamics further complicate IT-OT security efforts. Fundamental differences in priorities, workflows, and risk perspectives create challenges that can lead to misalignment between teams:

Non-transferable practices: IT professionals might assume that cybersecurity practices from IT environments can be directly applied to OT environments. This can lead to issues, as OT systems and workflows may not handle IT security processes as expected. It's crucial to recognize and respect the unique requirements and constraints of OT environments.

Segmented responsibilities: IT and OT teams often operate under separate organizational structures, each with distinct priorities, goals, and workflows. While IT focuses on data security, network integrity, and enterprise applications, OT prioritizes uptime, reliability, and physical processes.

Different risk perspectives: While IT teams focus on preventing cyber threats and regulatory violations, OT teams prioritize uptime and operational reliability making them drawn towards asset inventory tools that provide no threat detection capability.

Result: A combination of disparate and ineffective tools and misaligned teams can make any progress toward risk reduction at an organization seem impossible. The right tools should be able to both free up time for collaboration and prompt better communication between IT and OT teams where it is needed. However, different size operations structure their IT and OT teams differently which impacts the priorities for each team.

In real-world scenarios, small IT teams struggle to manage security across both IT and OT, while larger organizations with OT security teams face alert fatigue and numerous false positives slowing down investigations and hindering effective communication with the IT security teams.

By unifying visibility and investigations, Darktrace / OT helps organizations of all sizes detect threats earlier, streamline workflows, and enhance security across both IT and OT environments. The following examples illustrate how AI-driven investigations can transform security operations, improving detection, investigation, and response.

Before and after AI-led investigation

Before: Small manufacturing company

At a small manufacturing company, a 1-3 person IT team juggles everything from email security to network troubleshooting. An analyst might see unusual traffic through the firewall:

  • Unusual repeated outbound traffic from an IP within their OT network destined to an unidentifiable external IP.

With no dedicated OT security tools and limited visibility into the industrial network, they don’t know what the internal device in question is, if it is beaconing to a malicious external IP, and what it may be doing to other devices within the OT network. Without a centralized dashboard, they must manually check logs, ask operators about changes, and hunt for anomalies across different systems.

After a day of investigation, they concluded the traffic was not to be expected activity. They stop production within their smaller OT network, update their firewall rules and factory reset all OT devices and systems within the blast radius of the IP device in question.

After: Faster, automated response with Cyber AI Analyst

With Darktrace / OT and Cyber AI Analyst, the IT team moves from reactive, manual investigations to proactive, automated threat detection:

  • Cyber AI Analyst connects alerts across their IT and OT infrastructure temporally mapping them to attack frameworks and provides contextual analysis of how alerts are linked, revealing in real time attackers attempting lateral movement from IT to OT.
  • A human-readable incident report explains the full scope of the incident, eliminating hours of manual investigation.
  • The team is faster to triage as they are led directly to prioritized high criticality alerts, now capable of responding immediately instead of wasting valuable time hunting for answers.

By reducing noise, providing context, and automating investigations, Cyber AI Analyst transforms OT security, enabling small IT teams to detect, understand, and respond to threats—without deep OT cybersecurity expertise.

Before: Large critical infrastructure organization

In large critical infrastructure operations, OT and IT teams work in separate silos. The OT security team needs to quickly assess and prioritize alerts, but their system floods them with notifications:

  • Multiple new device connected to the ICS network alerts
  • Multiple failed logins to HMI detected
  • Multiple Unusual Modbus/TCP commands detected
  • Repeated outbound OT traffic to IT destinations

At first glance, these alerts seem important, but without context, it’s unclear whether they indicate a routine error, a misconfiguration, or an active cyber-attack. They might ask:

  • Are the failed logins just a mistake, or a brute-force attempt?
  • Is the outbound traffic part of a scheduled update, or data exfiltration?

Without correlation across events, the engineer must manually investigate each one—checking logs, cross-referencing network activity, and contacting operators—wasting valuable time. Meanwhile, if it’s a coordinated attack, the adversary may already be disrupting operations.

After: A new workflow with Cyber AI Analyst

With Cyber AI Analyst, the OT security team gets clear, automated correlation of security events, making investigations faster and more efficient:

  • Automated correlation of OT threats: Instead of isolated alerts, Cyber AI Analyst stitches together related events, providing a single, high-confidence incident report that highlights key details.
  • Faster time to meaning: The system connects anomalous behaviors (e.g., failed logins, unusual traffic from an HMI, and unauthorized PLC modifications) into a cohesive narrative, eliminating hours of manual log analysis.
  • Prioritized and actionable alerts: OT security receives clear, ranked incidents, immediately highlighting what matters most.
  • Rapid threat understanding: Security teams know within minutes whether an event is a misconfiguration or a cyber-attack, allowing for faster containment.

With Cyber AI Analyst, large organizations cut through alert noise, accelerate investigations, and detect threats faster—without disrupting OT operations.

An AI-led approach to industrial cybersecurity

Security vendors with a primary focus on IT may lack insight into OT threats. Even OT-focused vendors have limited visibility into IT device exploitation within OT networks, leading to failed ability to detect early indicators of compromise. A comprehensive solution must account for the unique characteristics of various OT environments.

In a world where industrial security is no longer just about protecting OT but securing the entire digital-physical ecosystem as it interacts with the OT network, Darktrace / OT is an AI-driven solution that unifies visibility across IT, IoT and OT, Cloud into one cohesive defense strategy.

Whether an attack originates from an external breach, an insider threat, a supply chain compromise, in the Cloud, OT, or IT domains Cyber AI Analyst ensures that security teams see the full picture - before disruption occurs.

Learn more about Darktrace / OT 

  • Unify IT and OT security under a single platform, ensuring seamless communication and protection for all interconnected devices.
  • Maintain uptime with AI-driven threat containment, stopping attacks without disrupting production.
  • Mitigate risks with or without patches, leveraging MITRE mitigations to reduce attack opportunities.

Download the solution brief to see how Darktrace secures critical infrastructure.

Continue reading
About the author
Daniel Simonds
Director of Operational Technology
Your data. Our AI.
Elevate your network security with Darktrace AI