Blog
/
Email
/
January 9, 2025

Detecting and Mitigating Adversary-in-the-Middle Phishing Attacks with Darktrace Services

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Jan 2025
Threat actors often use advanced phishing toolkits and Adversary-in-the-Middle (AitM) attacks in Business Email Compromise (BEC) campaigns, Discover how Darktrace detected and mitigated a sophisticated attack leveraging Dropbox, highlighting the importance of robust cybersecurity measures.

What is an Adversary-in-the-Middle Attack?

Threat actors are increasingly utilizing advanced phishing toolkits and techniques to carry out Adversary-in-the-Middle (AitM) attacks. These attacks involve the use of a proxy to a legitimate service, where the attacker’s webpage mimics the expected site. While the victim believes they are visiting the legitimate site, they are actually interacting with the attacker’s device, allowing the malicious actor to monitor all interactions and control the authenticated session, ultimately gaining access to the user’s account [1][2].

This blog will explore how Darktrace detected AitM techniques being leveraged in a Business Email Compromise (BEC) attack that used the widely used and trusted cloud storage service, Dropbox, for delivery. Dropbox’s popularity has made it a prime target for attackers to exploit in recent years. Threat actors can exploit the service for various malicious activities, including distributing malware and exposing sensitive information.

Attack Overview

In these types of AitM BEC attacks, recipients are often targeted with Dropbox-related emails, featuring subject headings like ‘FirstLast shared "Filename" with you,’ which suggest an individual is sharing an invoice-related attachment. These email subjects are common in such attacks, as threat actors attempt to encourage victims to access Dropbox links by masquerading them as legitimate files.

While higher priority users are, of course, targeted, the scope of these attacks remains broad. For instance, if a lower priority user is targeted by a phishing attack or their token is stolen, an attacker can still attempt BEC for further malicious intent and financial gain.

In October 2024, a Darktrace customer received a phishing email from a seemingly legitimate Dropbox address. This email originated from the IP, 54.240.39[.]219 and contained multiple link payloads to Dropbox-related hostnames were observed, inviting the user to access a file. Based on anomaly indicators and detection by Darktrace / EMAIL, Darktrace recognized that one of the payloads was attempting to abuse a legitimate cloud platform to share files or other unwanted material with the recipient.

Overview of the malicious email in the Darktrace / EMAIL console, highlighting Dropbox associated content/link payloads.
Figure 1: Overview of the malicious email in the Darktrace / EMAIL console, highlighting Dropbox associated content/link payloads.

Following the recipient’s engagement with this email, Darktrace / IDENTITY identified a series of suspicious activities within the customer’s environment.

AitM attacks allow threat actors to bypass multi-factor authentication (MFA). Initially, when a user is phished, the malicious infrastructure captures both the user’s credentials and the token. This includes replaying a token issued to user that has already completed the MFA requirement, allowing the threat actor to satisfy the validity of the requirement and gain access to sensitive organizational resources. Darktrace is able to analyze user activity and authentication patterns to determine whether MFA requirements were met. This capability helps verify and indicate token theft via AitM.

Darktrace observed the associated user account making requests over Microsoft 365 from the IP 41.90.175[.]46. Given the unusual nature and rare geolocation based in Kenya, Africa, this activity did not appear indicative of legitimate business operations.

Geographical location of the SaaS user
Figure 2: Geographical location of the SaaS user in relation to the source IP 41.90.175[.]46.

Further analysis using open-source intelligence (OSINT) revealed that the endpoint was likely associated with a call-back proxy network [3]. This suggested the presence of a network device capable of re-routing traffic and harvesting information.

Darktrace also detected that the same SaaS user was logging in from two different locations around the same time. One login was from a common, expected location, while the other was from an unusual location. Additionally, the user was observed registering security information using the Microsoft Authenticator app, indicating an attempt by an attacker to maintain access to the account by establishing a new method of MFA. This new MFA method could be used to bypass future MFA requirements, allowing the attacker to access sensitive material or carry out further malicious activities.

External sites summary for the SaaS account in relation to the source IP 13.74.161[.]104, observed with Registering Security Information.
Figure 3: External sites summary for the SaaS account in relation to the source IP 13.74.161[.]104, observed with Registering Security Information.

Ultimately, this anomalous behavior was escalated to the Darktrace Security Operations Centre (SOC) via the Managed Detection & Response service for prompt triage and investigation by Darktrace’s SOC Analysts who notified the customer of strong evidence of compromise.

Fortunately, since this customer had Darktrace enabled in Autonomous Response mode, the compromised SaaS account had already been disabled, containing the attack. Darktrace’s SOC elected to extend this action to ensure the malicious activity remained halted until the customer could take further remedial action.

Attack timeline of observed activity, in chronological order; This highlighted anomalous SaaS events such as, MailItemsAccessed’, ‘Use of Unusual Credentials’, ‘User Registered Security Info’ events, and a ‘Disable User’ Autonomous Response action.
Figure 4: Attack timeline of observed activity, in chronological order; This highlighted anomalous SaaS events such as, MailItemsAccessed’, ‘Use of Unusual Credentials’, ‘User Registered Security Info’ events, and a ‘Disable User’ Autonomous Response action.

Conclusion

AitM attacks can play a crucial role in BEC campaigns. These attacks are often part of multi-staged operations, where an initial AitM attack is leveraged to launch a BEC by delivering a malicious URL through a trusted vendor or service. Attackers often attempt to lay low on their target network, sometimes persisting for extended periods, as they monitor user accounts or network segments to intercept sensitive communications.

In this instance, Darktrace successfully identified and acted against AitM techniques being leveraged in a BEC attack that used Dropbox for delivery. While Dropbox is widely used for legitimate purposes, its popularity has also made it a target for exploitation by threat actors, who have used it for a variety of malicious purposes, including delivering malware and revealing sensitive information.

Darktrace’s Security Operations Support service, combined with its Autonomous Response technology, provided timely and effective mitigation. Dedicated Security Operations Support analysts triaged the incident and implemented preventative measures, ensuring the customer was promptly notified. Meanwhile, Darktrace swiftly disabled the compromised SaaS account, allowing the customer to take further necessary actions, such as resetting the user’s password.

This case highlights the capabilities of Darktrace’s solutions, enabling the customer to resume normal business operations despite the malicious activity.

Credit to Justin Torres (Senior Cyber Analyst), Stefan Rowe (Technical Director, SOC) and Ryan Traill (Analyst Content Lead)

Appendices

References

1.    https://www.proofpoint.com/us/threat-reference/man-in-the-middle-attack-mitm

2.    https://thehackernews.com/2024/08/how-to-stop-aitm-phishing-attack.html

3.    https://spur.us/context/41.90.175.46

Darktrace Model Detections

Darktrace / NETWORK Model Alert(s):

SaaS / Compromise::SaaS Anomaly Following Anomalous Login

SaaS / Unusual Activity::Multiple Unusual SaaS Activities

SaaS / Compromise::Unusual Login and Account Update

SaaS / Compromise::Login From Rare Endpoint While User Is Active

SaaS / Access::Unusual External Source for SaaS Credential Use

SaaS / Email Nexus::Unusual Login Location Following Link to File Storage

SaaS / Access::MailItemsAccessed from Rare Endpoint

Darktrace/Autonomous Response Model Alert(s):

Antigena / SaaS::Antigena Suspicious SaaS Activity Block

List of Indicators of Compromise (IoCs)

(IoC - Type - Description)

41.90.175[.]46 – Source IP Observed with Suspicious Login Behavior

MITRE ATT&CK Mapping

(Technique Name - Tactic - ID - Sub-Technique of)

Cloud Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078.004 - T1078

Email Accounts - RESOURCE DEVELOPMENT - T1586.002 - T1586

Cloud Service Dashboard - DISCOVERY - T1538

Compromise Accounts - RESOURCE DEVELOPMENT - T1586

Steal Web Session Cookie - CREDENTIAL ACCESS - T1539

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Justin Torres
Cyber Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

Network

/

February 19, 2025

Darktrace Releases Annual 2024 Threat Insights

Default blog imageDefault blog image

Introduction: Darktrace’s threat research

Defenders must understand the threat landscape in order to protect against it. They can do that with threat intelligence.

Darktrace approaches threat intelligence with a unique perspective. Unlike traditional security vendors that rely on established patterns from past incidents, it uses a strategy that is rooted in the belief that identifying behavioral anomalies is crucial for identifying both known and novel threats.

For Darktrace analysts and researchers, the incidents detected by the AI solution mark the beginning of a deeper investigation, aiming to connect mitigated threats to wider trends from across the threat landscape. Through hindsight analysis, the Darktrace Threat Research team has highlighted numerous threats, including zero-day, n-day, and other novel attacks, showcasing their evolving nature and Darktrace’s ability to identify them.

In 2024, the Threat Research team observed major trends around vulnerabilities in internet-facing systems, new and re-emerging ransomware strains, and sophisticated email attacks. Read on to discover some of our key insights into the current cybersecurity threat landscape.

Multiple campaigns target vulnerabilities in internet-facing systems

It is increasingly common for threat actors to identify and exploit newly discovered vulnerabilities in widely used services and applications, and in some cases, these vulnerability exploitations occur within hours of disclosure.

In 2024, the most significant campaigns observed involved the ongoing exploitation of zero-day and n-day vulnerabilities in edge and perimeter network technologies. In fact, in the first half of the year, 40% of all identified campaign activity came from the exploitation of internet-facing devices. Some of the most common exploitations involved Ivanti Connect Secure (CS) and Ivanti Policy Secure (PS) appliances, Palo Alto Network (PAN-OS) firewall devices, and Fortinet appliances.

Darktrace helps security teams identify suspicious behavior quickly, as demonstrated with the critical vulnerability in PAN-OS firewall devices. The vulnerability was publicly disclosed on April 11, 2024, yet with anomaly-based detection, Darktrace’s Threat Research team was able to identify a range of suspicious behavior related to exploitation of this vulnerability, including command-and-control (C2) connectivity, data exfiltration, and brute-forcing activity, as early as March 26.

That means that Darktrace and our Threat Research team detected this Common Vulnerabilities and Exposure (CVE) exploitation 16 days before the vulnerability was disclosed. Addressing critical vulnerabilities quickly massively benefits security, as teams can reduce their effectiveness by slowing malicious operations and forcing attackers to pursue more costly and time-consuming methods.

Persistent ransomware threats continue to evolve

The continued adoption of the Ransomware-as-a-Service (RaaS) model provides even less experienced threat actors with the tools needed to carry out disruptive attacks, significantly lowering the barrier to entry.

The Threat Research team tracked both novel and re-emerging strains of ransomware across the customer fleet, including Akira, LockBit, and Lynx. Within these ransomware attempts and incidents, there were notable trends in attackers’ techniques: using phishing emails as an attack vector, exploiting legitimate tools to mask C2 communication, and exfiltrating data to cloud storage services.

Read the Annual 2024 Threat Report for the complete list of prominent ransomware actors and their commonly used techniques.

Onslaught of email threats continues

With a majority of attacks originating from email, it is crucial that organizations secure the inboxes and beyond.

Between December 21, 2023, and December 18, 2024, Darktrace / EMAIL detected over 30.4 million phishing emails across the fleet. Of these, 70% successfully bypassed Domain-based Message Authentication, Reporting, and Conformance (DMARC) verification checks and 55% passed through all other existing layers of customer email security.

The abuse of legitimate services and senders continued to be a significant method for threat actors throughout 2024. By leveraging trusted platforms and domains, malicious actors can bypass traditional security measures and increase the likelihood of their phishing attempts being successful.

This past year, there was a substantial use of legitimately authenticated senders and previously established domains, with 96% of phishing emails detected by Darktrace / EMAIL utilizing existing domains rather than registering new ones.

These are not the only types of email attacks we observed. Darktrace detected over 2.7 million emails with multistage payloads.

While most traditional cybersecurity solutions struggle to cover multiple vectors and recognize each stage of complex attacks as part of wider malicious activity, Darktrace can detect and respond across email, identities, network, and cloud.

Conclusion

The Darktrace Threat Research team continues to monitor the ever-evolving threat landscape. Major patterns over the last year have revealed the importance of fast-acting, anomaly-based detection like Darktrace provides.

For example, response speed is essential when campaigns target vulnerabilities in internet-facing systems, and these vulnerabilities can be exploited by attackers within hours of their disclosure if not even before that.

Similarly, anomaly-based detection can identify hard to find threats like ransomware attacks that increasingly use living-off-the-land techniques and legitimate tools to hide malicious activity. A similar pattern can be found in the realm of email security, where attacks are also getting harder to spot, especially as they frequently exploit trusted senders, use redirects via legitimate services, and craft attacks that bypass DMARC and other layers of email security.

As attacks appear with greater complexity, speed, and camouflage, defenders must have timely detection and containment capabilities to handle all emerging threats. These hard-to-spot attacks can be identified and stopped by Darktrace.

Download the full report

Discover the latest threat landscape trends and recommendations from the Darktrace Threat Research team.

Continue reading
About the author
The Darktrace Threat Research Team

Blog

/

OT

/

February 18, 2025

Unifying IT & OT With AI-Led Investigations for Industrial Security

Default blog imageDefault blog image

As industrial environments modernize, IT and OT networks are converging to improve efficiency, but this connectivity also creates new attack paths. Previously isolated OT systems are now linked to IT and cloud assets, making them more accessible to attackers.

While organizations have traditionally relied on air gaps, firewalls, data diodes, and access controls to separate IT and OT, these measures alone aren’t enough. Threat actors often infiltrate IT/Enterprise networks first then exploit segmentation, compromising credentials, or shared IT/OT systems to move laterally, escalate privileges, and ultimately enter the OT network.

To defend against these threats, organizations must first ensure they have complete visibility across IT and OT environments.

Visibility: The first piece of the puzzle

Visibility is the foundation of effective industrial cybersecurity, but it’s only the first step. Without visibility across both IT and OT, security teams risk missing key alerts that indicate a threat targeting OT at their earliest stages.

For Attacks targeting OT, early stage exploits often originate in IT environments, adversaries perform internal reconnaissance among other tactics and procedures but then laterally move into OT first affecting IT devices, servers and workstations within the OT network. If visibility is limited, these threats go undetected. To stay ahead of attackers, organizations need full-spectrum visibility that connects IT and OT security, ensuring no early warning signs are missed.

However, visibility alone isn’t enough. More visibility also means more alerts, this doesn’t just make it harder to separate real threats from routine activity, but bogs down analysts who have to investigate all these alerts to determine their criticality.

Investigations: The real bottleneck

While visibility is essential, it also introduces a new challenge: Alert fatigue. Without the right tools, analysts are often occupied investigating alerts with little to no context, forcing them to manually piece together information and determine if an attack is unfolding. This slows response times and increases the risk of missing critical threats.

Figure 1: Example ICS attack scenario

With siloed visibility across IT and OT each of these events shown above would be individually alerted by a detection engine with little to no context nor correlation. Thus, an analyst would have to try to piece together these events manually. Traditional security tools struggle to keep pace with the sophistication of these threats, resulting in an alarming statistic: less than 10% of alerts are thoroughly vetted, leaving organizations vulnerable to undetected breaches. As a result, incidents inevitably follow.

Darktrace’s Cyber AI Analyst uses AI-led investigations to improve workflows for analysts by automatically correlating alerts wherever they occur across both IT and OT. The multi-layered AI engine identifies high-priority incidents, and provides analysts with clear, actionable insights, reducing noise and highlighting meaningful threats. The AI significantly alleviates workloads, enabling teams to respond faster and more effectively before an attack escalates.

Overcoming organizational challenges across IT and OT

Beyond technical challenges like visibility and alert management, organizational dynamics further complicate IT-OT security efforts. Fundamental differences in priorities, workflows, and risk perspectives create challenges that can lead to misalignment between teams:

Non-transferable practices: IT professionals might assume that cybersecurity practices from IT environments can be directly applied to OT environments. This can lead to issues, as OT systems and workflows may not handle IT security processes as expected. It's crucial to recognize and respect the unique requirements and constraints of OT environments.

Segmented responsibilities: IT and OT teams often operate under separate organizational structures, each with distinct priorities, goals, and workflows. While IT focuses on data security, network integrity, and enterprise applications, OT prioritizes uptime, reliability, and physical processes.

Different risk perspectives: While IT teams focus on preventing cyber threats and regulatory violations, OT teams prioritize uptime and operational reliability making them drawn towards asset inventory tools that provide no threat detection capability.

Result: A combination of disparate and ineffective tools and misaligned teams can make any progress toward risk reduction at an organization seem impossible. The right tools should be able to both free up time for collaboration and prompt better communication between IT and OT teams where it is needed. However, different size operations structure their IT and OT teams differently which impacts the priorities for each team.

In real-world scenarios, small IT teams struggle to manage security across both IT and OT, while larger organizations with OT security teams face alert fatigue and numerous false positives slowing down investigations and hindering effective communication with the IT security teams.

By unifying visibility and investigations, Darktrace / OT helps organizations of all sizes detect threats earlier, streamline workflows, and enhance security across both IT and OT environments. The following examples illustrate how AI-driven investigations can transform security operations, improving detection, investigation, and response.

Before and after AI-led investigation

Before: Small manufacturing company

At a small manufacturing company, a 1-3 person IT team juggles everything from email security to network troubleshooting. An analyst might see unusual traffic through the firewall:

  • Unusual repeated outbound traffic from an IP within their OT network destined to an unidentifiable external IP.

With no dedicated OT security tools and limited visibility into the industrial network, they don’t know what the internal device in question is, if it is beaconing to a malicious external IP, and what it may be doing to other devices within the OT network. Without a centralized dashboard, they must manually check logs, ask operators about changes, and hunt for anomalies across different systems.

After a day of investigation, they concluded the traffic was not to be expected activity. They stop production within their smaller OT network, update their firewall rules and factory reset all OT devices and systems within the blast radius of the IP device in question.

After: Faster, automated response with Cyber AI Analyst

With Darktrace / OT and Cyber AI Analyst, the IT team moves from reactive, manual investigations to proactive, automated threat detection:

  • Cyber AI Analyst connects alerts across their IT and OT infrastructure temporally mapping them to attack frameworks and provides contextual analysis of how alerts are linked, revealing in real time attackers attempting lateral movement from IT to OT.
  • A human-readable incident report explains the full scope of the incident, eliminating hours of manual investigation.
  • The team is faster to triage as they are led directly to prioritized high criticality alerts, now capable of responding immediately instead of wasting valuable time hunting for answers.

By reducing noise, providing context, and automating investigations, Cyber AI Analyst transforms OT security, enabling small IT teams to detect, understand, and respond to threats—without deep OT cybersecurity expertise.

Before: Large critical infrastructure organization

In large critical infrastructure operations, OT and IT teams work in separate silos. The OT security team needs to quickly assess and prioritize alerts, but their system floods them with notifications:

  • Multiple new device connected to the ICS network alerts
  • Multiple failed logins to HMI detected
  • Multiple Unusual Modbus/TCP commands detected
  • Repeated outbound OT traffic to IT destinations

At first glance, these alerts seem important, but without context, it’s unclear whether they indicate a routine error, a misconfiguration, or an active cyber-attack. They might ask:

  • Are the failed logins just a mistake, or a brute-force attempt?
  • Is the outbound traffic part of a scheduled update, or data exfiltration?

Without correlation across events, the engineer must manually investigate each one—checking logs, cross-referencing network activity, and contacting operators—wasting valuable time. Meanwhile, if it’s a coordinated attack, the adversary may already be disrupting operations.

After: A new workflow with Cyber AI Analyst

With Cyber AI Analyst, the OT security team gets clear, automated correlation of security events, making investigations faster and more efficient:

  • Automated correlation of OT threats: Instead of isolated alerts, Cyber AI Analyst stitches together related events, providing a single, high-confidence incident report that highlights key details.
  • Faster time to meaning: The system connects anomalous behaviors (e.g., failed logins, unusual traffic from an HMI, and unauthorized PLC modifications) into a cohesive narrative, eliminating hours of manual log analysis.
  • Prioritized and actionable alerts: OT security receives clear, ranked incidents, immediately highlighting what matters most.
  • Rapid threat understanding: Security teams know within minutes whether an event is a misconfiguration or a cyber-attack, allowing for faster containment.

With Cyber AI Analyst, large organizations cut through alert noise, accelerate investigations, and detect threats faster—without disrupting OT operations.

An AI-led approach to industrial cybersecurity

Security vendors with a primary focus on IT may lack insight into OT threats. Even OT-focused vendors have limited visibility into IT device exploitation within OT networks, leading to failed ability to detect early indicators of compromise. A comprehensive solution must account for the unique characteristics of various OT environments.

In a world where industrial security is no longer just about protecting OT but securing the entire digital-physical ecosystem as it interacts with the OT network, Darktrace / OT is an AI-driven solution that unifies visibility across IT, IoT and OT, Cloud into one cohesive defense strategy.

Whether an attack originates from an external breach, an insider threat, a supply chain compromise, in the Cloud, OT, or IT domains Cyber AI Analyst ensures that security teams see the full picture - before disruption occurs.

Learn more about Darktrace / OT 

  • Unify IT and OT security under a single platform, ensuring seamless communication and protection for all interconnected devices.
  • Maintain uptime with AI-driven threat containment, stopping attacks without disrupting production.
  • Mitigate risks with or without patches, leveraging MITRE mitigations to reduce attack opportunities.

Download the solution brief to see how Darktrace secures critical infrastructure.

Continue reading
About the author
Daniel Simonds
Director of Operational Technology
Your data. Our AI.
Elevate your network security with Darktrace AI