Blog
/
Network
/
February 11, 2025

Defending against living-off-the-land attacks: Anomaly detection in action

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
Feb 2025
Discover how Darktrace detected and responded to cyberattacks using Living-off-the-Land (LOTL) tactics to exploit trusted services and tools on customer networks.

What is living-off-the-land?

Threat actors employ a variety of techniques to compromise target networks, including exploiting unpatched vulnerabilities, abusing misconfigurations, deploying backdoors, and creating custom malware. However, these methods generate a lot of noise and are relatively easy for network and host-based monitoring tools to detect, especially once indicators of compromise (IoCs) and tactics, techniques, and procedures (TTPs) are published by the cybersecurity community.

Living-off-the-Land (LOTL) techniques, however, allow attacks to remain nearly invisible to Endpoint Detection and Response (EDR) tools – leveraging trusted protocols, applications and native systems to carry out malicious activity. While mitigations exist, they are often poorly implemented. The Cybersecurity and Infrastructure Security Agency (CISA) found that some organizations “lacked security baselines, allowing [Living-off-the-Land binaries (LOLBins)] to execute and leaving analysts unable to identify anomalous activity” and “organizations did not appropriately tune their detection tools to reduce alert noise, leading to an unmanageable level of alerts to sift through and action" [1].

Darktrace / NETWORK addresses this challenge across Information Technology (IT), Operational Technology (OT), and cloud environments by continuously analyzing network traffic and identifying deviations from normal behavior with its multi-layered AI – helping organizations detect and respond to LOTL attacks in real time.

Darktrace’s detection of LOTL attacks

This blog will review two separate attacks detected by Darktrace that leveraged LOTL techniques at several stages of the intrusion.

Case A

Reconnaissance

In September 2024, a malicious actor gained access to a customer network via their Virtual Private Network (VPN) from two desktop devices that had no prior connection history. Over two days, the attacker conducted multiple network scans, targeting ports associated with Remote Desktop Protocol (RDP) and NTLM authentication. Darktrace detected this unusual activity, triggering multiple alerts for scanning and enumeration activity.

Unusual NTLM authentication attempts using default accounts like “Guest” and “Administrator” were detected. Two days after the initial intrusion, suspicious DRSGetNCChanges requests were observed on multiple domain controllers (DCs), targeting the Directory Replication Service RPC interface (i.e., drsuapi) – a technique used to extract account hashes from DCs. This process can be automated using tools like Mimikatz's DcSync and DCShadow

Around the same time, attacker-controlled devices were seen presenting an admin credential and another credential potentially granting access to Cisco Firewall systems, suggesting successful privilege escalation. Due to the severity of this activity, Darktrace’s Autonomous Response was triggered to prevent the device from further deviation from its normal behavior. However, because Autonomous Response was configured in Human Confirmation mode, the response actions had to be manually applied by the customer.

Cyber AI Analyst Critical Incident showing the unusual DRSGetNCChanges requests following unusual scanning activity.
Figure 1: Cyber AI Analyst Critical Incident showing the unusual DRSGetNCChanges requests following unusual scanning activity.

Lateral movement

Darktrace also detected anomalous RDP connections to domain controllers, originating from an attacker-controlled device using admin and service credentials. The attacker then successfully pivoted to a likely RDP server, leveraging the RDP protocol – one of the most commonly used for lateral movement in network compromises observed by Darktrace.

Cyber Analyst Incident displaying unusual RDP lateral movement connections
Figure 2: Cyber Analyst Incident displaying unusual RDP lateral movement connections.

Tooling

Following an incoming RDP connection, one of the DCs made a successful GET request to the URI '/download/122.dll' on the 100% rare IP, 146.70.145[.]189. The request returned an executable file, which open-source intelligence (OSINT) suggests is likely a CobaltStrike C2 sever payload [2] [3]. Had Autonomous Response been enabled here, it would have blocked all outgoing traffic from the DC allowing the customer to investigate and remediate.

Additionally, Darktrace detected a suspicious CreateServiceW request to the Service Control (SVCCTL) RPC interface on a server. The request executed commands using ‘cmd.exe’ to perform the following actions

  1. Used ‘tasklist’ to filter processes named ”lsass.exe” (Local Security Authority Subsystem Service) to find its specific process ID.
  2. Used “rundll32.exe” to execute the MiniDump function from the “comsvcs.dll” library, creating a memory dump of the “lsass.exe” process.
  3. Saved the output to a PNG file in a temporary folder,

Notably, “cmd.exe” was referenced as “CMd.EXE” within the script, likely an attempt to evade detection by security tools monitoring for specific keywords and patterns.

Model Alert Log showing the unusual SVCCTL create request.
Figure 3: Model Alert Log showing the unusual SVCCTL create request.

Over the course of three days, this activity triggered around 125 Darktrace / NETWORK alerts across 11 internal devices. In addition, Cyber AI Analyst launched an autonomous investigation into the activity, analyzing and connecting 16 separate events spanning multiple stages of the cyber kill chain - from initial reconnaissance to payload retrieval and lateral movement.

Darktrace’s comprehensive detection enabled the customer’s security team to remediate the compromise before any further escalation was observed.

Case B

Between late 2023 and early 2024, Darktrace identified a widespread attack that combined insider and external threats, leveraging multiple LOTL tools for reconnaissance and lateral movement within a customer's network.

Reconnaissance

Initially, Darktrace detected the use of a new administrative credential by a device, which then made unusual RDP connections to multiple internal systems, including a 30-minute connection to a DC. Throughout the attack, multiple unusual RDP connections using the new administrative credential “%admin!!!” were observed, indicating that this protocol was leveraged for lateral movement.

The next day, a Microsoft Defender Security Integration alert was triggered on the device due to suspicious Windows Local Security Authority Subsystem Service (LSASS) credential dump behavior. Since the LSASS process memory can store operating system and domain admin credentials, obtaining this sensitive information can greatly facilitate lateral movement within a network using legitimate tools such as PsExec or Windows Management Instrumentation (WMI) [4]. Security integrations with other security vendors like this one can provide insights into host-based processes, which are typically outside of Darktrace’s coverage. Darktrace’s anomaly detection and network activity monitoring help prioritize the investigation of these alerts.

Three days later, the attacker was observed logging into the DC and querying tickets for the Lightweight Directory Access Protocol (LDAP) service using the default credential “Administrator.” This activity, considered new by Darktrace, triggered an Autonomous Response action that blocked further connections on Kerberos port 88 to the DC. LDAP provides a central location to access and manage data about computers, servers, users, groups, and policies within a network. LDAP enumeration can provide valuable Active Directory (AD) object information to an attacker, which can be used to identify critical attack paths or accounts with high privileges.

Lateral movement

Following the incoming RDP connection, the DC began scanning activities, including RDP and Server Block Message (SMB) services, suggesting the attacker was using remote access for additional reconnaissance. Outgoing RDP connection attempts to over 100 internal devices were observed, with around 5% being successful, highlighting the importance of this protocol for the threat actor’s lateral movement.

Around the same time, the DC made WMI, PsExec, and service control connections to two other DCs, indicating further lateral movement using native administrative protocols and tools. These functions can be leveraged by attackers to query system information, run malicious code, and maintain persistent access to compromised devices while avoiding traditional security tool alarms. In this case, requested services included the IWbemServices (used to access WMI services) and IWbemFetchSmartEnum (used to retrieve a network-optimized enumerator interface) interfaces, with ExecQuery operations detected for the former. This method returns an enumerable collection of IWbemClassObject interface objects based on a query.

Additionally, unusual Windows Remote Management (WinRM) connections to another domain controller were observed. WinRM is a Microsoft protocol that allows systems to exchange and access management information over HTTP(S) across a network, such as running executables or modifying the registry and services.

Cyber AI Analyst Incident showing unusual WMI activity between the two DCs.
Figure 4: Cyber AI Analyst Incident showing unusual WMI activity between the two DCs.

The DC was also detected writing the file “PSEXESVC.exe” to the “ADMIN$” share of another internal device over the SMB file transfer network protocol. This activity was flagged as highly unusual by Darktrace, as these two devices had not previously engaged in this type of SMB connectivity.

It is rare for an attacker to immediately find the information or systems they are after, making it likely they will need to move around the network before achieving their objectives. Tools such as PsExec enable attackers to do this while largely remaining under the radar. With PsExec, attackers who gain access to a single system can connect to and execute commands remotely on other internal systems, access sensitive information, and spread their attack further into the environment.

Model Alert Event Log showing the new write of the file “PSEXESVC.exe” by one of the compromised devices over an SMB connection initiated at an unusual time.
Figure 5. Model Alert Event Log showing the new write of the file “PSEXESVC.exe” by one of the compromised devices over an SMB connection initiated at an unusual time.

Darktrace further observed the DC connecting to the SVCCTL endpoint on a remote device and performing the CreateServiceW operation, which was flagged as highly unusual based on previous behavior patterns between the two devices. Additionally, new ChangeServiceConfigW operations were observed from another device.

Aside from IWbemServices requests seen on multiple devices, Darktrace also detected multiple internal devices connecting to the ITaskSchedulerService interface over DCE-RPC and performing new SchRpcRegisterTask operations, which register a task on the destination system. Attackers can exploit the task scheduler to facilitate the initial or recurring execution of malicious code by a trusted system process, often with elevated permissions. The creation of these tasks was considered new or highly unusual and triggered several anomalous ITaskScheduler activity alerts.

Conclusion

As pointed out by CISA, threat actors frequently exploit the lack of implemented controls on their target networks, as demonstrated in the incidents discussed here. In the first case, VPN access was granted to all domain users, providing the attacker with a point of entry. In the second case, there were no restrictions on the use of RDP within the targeted network segment, allowing the attackers to pivot from device to device.

Darktrace assists security teams in monitoring for unusual use of LOTL tools and protocols that can be leveraged by threat actors to achieve a wide range of objectives. Darktrace’s Self-Learning AI sifts through the network traffic noise generated by these trusted tools, which are essential to administrators and developers in their daily tasks, and highlights any anomalous and potentially unexpected use.

Credit to Alexandra Sentenac (Senior Cyber Analyst) and Ryan Traill (Analyst Content Lead)

References

[1] https://www.cisa.gov/sites/default/files/2024-02/Joint-Guidance-Identifying-and-Mitigating-LOTL_V3508c.pdf

[2] https://www.virustotal.com/gui/ip-address/146.70.145.189/community

[3] https://www.virustotal.com/gui/file/cc9a670b549d84084618267fdeea13f196e43ae5df0d88e2e18bf5aa91b97318

[4]https://www.microsoft.com/en-us/security/blog/2022/10/05/detecting-and-preventing-lsass-credential-dumping-attacks

MITRE Mapping

INITIAL ACCESS - External Remote Services

DISCOVERY - Remote System Discovery

DISCOVERY - Network Service Discovery

DISCOVERY - File and Directory Discovery

CREDENTIAL ACCESS – OS Credential Dumping: LSASS Memory

LATERAL MOVEMENT - Remote Services: Remote Desktop Protocol

LATERAL MOVEMENT - Remote Services: SMB/Windows Admin Shares

EXECUTION - System Services: Service Execution

PERSISTENCE - Scheduled Task

COMMAND AND CONTROL - Ingress Tool Transfer

Darktrace Model Detections

Case A

Device / Suspicious Network Scan Activity

Device / Network Scan

Device / ICMP Address Scan

Device / Reverse DNS Sweep

Device / Suspicious SMB Scanning Activity

Device / Possible SMB/NTLM Reconnaissance

Anomalous Connection / Unusual Admin SMB Session

Device / SMB Session Brute Force (Admin)

Device / Possible SMB/NTLM Brute Force

Device / SMB Lateral Movement

Device / Anomalous NTLM Brute Force

Anomalous Connection / SMB Enumeration

Device / SMB Session Brute Force (Non-Admin)

Device / Anomalous SMB Followed By Multiple Model Breaches

Anomalous Connection / Possible Share Enumeration Activity

Device / RDP Scan

Device / Anomalous RDP Followed By Multiple Model Breaches

Anomalous Connection / Unusual Admin RDP Session

Anomalous Connection / Active Remote Desktop Tunnel

Anomalous Connection / Anomalous DRSGetNCChanges Operation

Anomalous Connection / High Priority DRSGetNCChanges

Compliance / Default Credential Usage

User / New Admin Credentials on Client

User / New Admin Credentials on Server

Device / Large Number of Model Breaches from Critical Network Device

User / New Admin Credential Ticket Request

Compromise / Unusual SVCCTL Activity

Anomalous Connection / New or Uncommon Service Control

Anomalous File / Script from Rare External Location

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Anomalous File / EXE from Rare External Location

Anomalous File / Numeric File Download

Device / Initial Breach Chain Compromise

Device / Multiple Lateral Movement Model Breaches

Device / Large Number of Model Breaches

Compromise / Multiple Kill Chain Indicators

Case B

User / New Admin Credentials on Client

Compliance / Default Credential Usage

Anomalous Connection / SMB Enumeration

Device / Suspicious SMB Scanning Activity

Device / RDP Scan

Device / New or Uncommon WMI Activity

Device / Anomaly Indicators / New or Uncommon WMI Activity Indicator

Device / New or Unusual Remote Command Execution

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / Active Remote Desktop Tunnel

Compliance / SMB Drive Write

Anomalous Connection / Anomalous DRSGetNCChanges Operation

Device / Multiple Lateral Movement Model Breaches

Device / Anomalous ITaskScheduler Activity

Anomalous Connection / Unusual Admin RDP Session

Device / Large Number of Model Breaches from Critical Network Device

Compliance / Default Credential Usage

IOC - Type - Description/Probability

146.70.145[.]189 - IP Address - Likely C2 Infrastructure

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Alexandra Sentenac
Cyber Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

Network

/

February 19, 2025

Darktrace Releases Annual 2024 Threat Insights

Default blog imageDefault blog image

Introduction: Darktrace’s threat research

Defenders must understand the threat landscape in order to protect against it. They can do that with threat intelligence.

Darktrace approaches threat intelligence with a unique perspective. Unlike traditional security vendors that rely on established patterns from past incidents, it uses a strategy that is rooted in the belief that identifying behavioral anomalies is crucial for identifying both known and novel threats.

For Darktrace analysts and researchers, the incidents detected by the AI solution mark the beginning of a deeper investigation, aiming to connect mitigated threats to wider trends from across the threat landscape. Through hindsight analysis, the Darktrace Threat Research team has highlighted numerous threats, including zero-day, n-day, and other novel attacks, showcasing their evolving nature and Darktrace’s ability to identify them.

In 2024, the Threat Research team observed major trends around vulnerabilities in internet-facing systems, new and re-emerging ransomware strains, and sophisticated email attacks. Read on to discover some of our key insights into the current cybersecurity threat landscape.

Multiple campaigns target vulnerabilities in internet-facing systems

It is increasingly common for threat actors to identify and exploit newly discovered vulnerabilities in widely used services and applications, and in some cases, these vulnerability exploitations occur within hours of disclosure.

In 2024, the most significant campaigns observed involved the ongoing exploitation of zero-day and n-day vulnerabilities in edge and perimeter network technologies. In fact, in the first half of the year, 40% of all identified campaign activity came from the exploitation of internet-facing devices. Some of the most common exploitations involved Ivanti Connect Secure (CS) and Ivanti Policy Secure (PS) appliances, Palo Alto Network (PAN-OS) firewall devices, and Fortinet appliances.

Darktrace helps security teams identify suspicious behavior quickly, as demonstrated with the critical vulnerability in PAN-OS firewall devices. The vulnerability was publicly disclosed on April 11, 2024, yet with anomaly-based detection, Darktrace’s Threat Research team was able to identify a range of suspicious behavior related to exploitation of this vulnerability, including command-and-control (C2) connectivity, data exfiltration, and brute-forcing activity, as early as March 26.

That means that Darktrace and our Threat Research team detected this Common Vulnerabilities and Exposure (CVE) exploitation 16 days before the vulnerability was disclosed. Addressing critical vulnerabilities quickly massively benefits security, as teams can reduce their effectiveness by slowing malicious operations and forcing attackers to pursue more costly and time-consuming methods.

Persistent ransomware threats continue to evolve

The continued adoption of the Ransomware-as-a-Service (RaaS) model provides even less experienced threat actors with the tools needed to carry out disruptive attacks, significantly lowering the barrier to entry.

The Threat Research team tracked both novel and re-emerging strains of ransomware across the customer fleet, including Akira, LockBit, and Lynx. Within these ransomware attempts and incidents, there were notable trends in attackers’ techniques: using phishing emails as an attack vector, exploiting legitimate tools to mask C2 communication, and exfiltrating data to cloud storage services.

Read the Annual 2024 Threat Report for the complete list of prominent ransomware actors and their commonly used techniques.

Onslaught of email threats continues

With a majority of attacks originating from email, it is crucial that organizations secure the inboxes and beyond.

Between December 21, 2023, and December 18, 2024, Darktrace / EMAIL detected over 30.4 million phishing emails across the fleet. Of these, 70% successfully bypassed Domain-based Message Authentication, Reporting, and Conformance (DMARC) verification checks and 55% passed through all other existing layers of customer email security.

The abuse of legitimate services and senders continued to be a significant method for threat actors throughout 2024. By leveraging trusted platforms and domains, malicious actors can bypass traditional security measures and increase the likelihood of their phishing attempts being successful.

This past year, there was a substantial use of legitimately authenticated senders and previously established domains, with 96% of phishing emails detected by Darktrace / EMAIL utilizing existing domains rather than registering new ones.

These are not the only types of email attacks we observed. Darktrace detected over 2.7 million emails with multistage payloads.

While most traditional cybersecurity solutions struggle to cover multiple vectors and recognize each stage of complex attacks as part of wider malicious activity, Darktrace can detect and respond across email, identities, network, and cloud.

Conclusion

The Darktrace Threat Research team continues to monitor the ever-evolving threat landscape. Major patterns over the last year have revealed the importance of fast-acting, anomaly-based detection like Darktrace provides.

For example, response speed is essential when campaigns target vulnerabilities in internet-facing systems, and these vulnerabilities can be exploited by attackers within hours of their disclosure if not even before that.

Similarly, anomaly-based detection can identify hard to find threats like ransomware attacks that increasingly use living-off-the-land techniques and legitimate tools to hide malicious activity. A similar pattern can be found in the realm of email security, where attacks are also getting harder to spot, especially as they frequently exploit trusted senders, use redirects via legitimate services, and craft attacks that bypass DMARC and other layers of email security.

As attacks appear with greater complexity, speed, and camouflage, defenders must have timely detection and containment capabilities to handle all emerging threats. These hard-to-spot attacks can be identified and stopped by Darktrace.

Download the full report

Discover the latest threat landscape trends and recommendations from the Darktrace Threat Research team.

Continue reading
About the author
The Darktrace Threat Research Team

Blog

/

OT

/

February 18, 2025

Unifying IT & OT With AI-Led Investigations for Industrial Security

Default blog imageDefault blog image

As industrial environments modernize, IT and OT networks are converging to improve efficiency, but this connectivity also creates new attack paths. Previously isolated OT systems are now linked to IT and cloud assets, making them more accessible to attackers.

While organizations have traditionally relied on air gaps, firewalls, data diodes, and access controls to separate IT and OT, these measures alone aren’t enough. Threat actors often infiltrate IT/Enterprise networks first then exploit segmentation, compromising credentials, or shared IT/OT systems to move laterally, escalate privileges, and ultimately enter the OT network.

To defend against these threats, organizations must first ensure they have complete visibility across IT and OT environments.

Visibility: The first piece of the puzzle

Visibility is the foundation of effective industrial cybersecurity, but it’s only the first step. Without visibility across both IT and OT, security teams risk missing key alerts that indicate a threat targeting OT at their earliest stages.

For Attacks targeting OT, early stage exploits often originate in IT environments, adversaries perform internal reconnaissance among other tactics and procedures but then laterally move into OT first affecting IT devices, servers and workstations within the OT network. If visibility is limited, these threats go undetected. To stay ahead of attackers, organizations need full-spectrum visibility that connects IT and OT security, ensuring no early warning signs are missed.

However, visibility alone isn’t enough. More visibility also means more alerts, this doesn’t just make it harder to separate real threats from routine activity, but bogs down analysts who have to investigate all these alerts to determine their criticality.

Investigations: The real bottleneck

While visibility is essential, it also introduces a new challenge: Alert fatigue. Without the right tools, analysts are often occupied investigating alerts with little to no context, forcing them to manually piece together information and determine if an attack is unfolding. This slows response times and increases the risk of missing critical threats.

Figure 1: Example ICS attack scenario

With siloed visibility across IT and OT each of these events shown above would be individually alerted by a detection engine with little to no context nor correlation. Thus, an analyst would have to try to piece together these events manually. Traditional security tools struggle to keep pace with the sophistication of these threats, resulting in an alarming statistic: less than 10% of alerts are thoroughly vetted, leaving organizations vulnerable to undetected breaches. As a result, incidents inevitably follow.

Darktrace’s Cyber AI Analyst uses AI-led investigations to improve workflows for analysts by automatically correlating alerts wherever they occur across both IT and OT. The multi-layered AI engine identifies high-priority incidents, and provides analysts with clear, actionable insights, reducing noise and highlighting meaningful threats. The AI significantly alleviates workloads, enabling teams to respond faster and more effectively before an attack escalates.

Overcoming organizational challenges across IT and OT

Beyond technical challenges like visibility and alert management, organizational dynamics further complicate IT-OT security efforts. Fundamental differences in priorities, workflows, and risk perspectives create challenges that can lead to misalignment between teams:

Non-transferable practices: IT professionals might assume that cybersecurity practices from IT environments can be directly applied to OT environments. This can lead to issues, as OT systems and workflows may not handle IT security processes as expected. It's crucial to recognize and respect the unique requirements and constraints of OT environments.

Segmented responsibilities: IT and OT teams often operate under separate organizational structures, each with distinct priorities, goals, and workflows. While IT focuses on data security, network integrity, and enterprise applications, OT prioritizes uptime, reliability, and physical processes.

Different risk perspectives: While IT teams focus on preventing cyber threats and regulatory violations, OT teams prioritize uptime and operational reliability making them drawn towards asset inventory tools that provide no threat detection capability.

Result: A combination of disparate and ineffective tools and misaligned teams can make any progress toward risk reduction at an organization seem impossible. The right tools should be able to both free up time for collaboration and prompt better communication between IT and OT teams where it is needed. However, different size operations structure their IT and OT teams differently which impacts the priorities for each team.

In real-world scenarios, small IT teams struggle to manage security across both IT and OT, while larger organizations with OT security teams face alert fatigue and numerous false positives slowing down investigations and hindering effective communication with the IT security teams.

By unifying visibility and investigations, Darktrace / OT helps organizations of all sizes detect threats earlier, streamline workflows, and enhance security across both IT and OT environments. The following examples illustrate how AI-driven investigations can transform security operations, improving detection, investigation, and response.

Before and after AI-led investigation

Before: Small manufacturing company

At a small manufacturing company, a 1-3 person IT team juggles everything from email security to network troubleshooting. An analyst might see unusual traffic through the firewall:

  • Unusual repeated outbound traffic from an IP within their OT network destined to an unidentifiable external IP.

With no dedicated OT security tools and limited visibility into the industrial network, they don’t know what the internal device in question is, if it is beaconing to a malicious external IP, and what it may be doing to other devices within the OT network. Without a centralized dashboard, they must manually check logs, ask operators about changes, and hunt for anomalies across different systems.

After a day of investigation, they concluded the traffic was not to be expected activity. They stop production within their smaller OT network, update their firewall rules and factory reset all OT devices and systems within the blast radius of the IP device in question.

After: Faster, automated response with Cyber AI Analyst

With Darktrace / OT and Cyber AI Analyst, the IT team moves from reactive, manual investigations to proactive, automated threat detection:

  • Cyber AI Analyst connects alerts across their IT and OT infrastructure temporally mapping them to attack frameworks and provides contextual analysis of how alerts are linked, revealing in real time attackers attempting lateral movement from IT to OT.
  • A human-readable incident report explains the full scope of the incident, eliminating hours of manual investigation.
  • The team is faster to triage as they are led directly to prioritized high criticality alerts, now capable of responding immediately instead of wasting valuable time hunting for answers.

By reducing noise, providing context, and automating investigations, Cyber AI Analyst transforms OT security, enabling small IT teams to detect, understand, and respond to threats—without deep OT cybersecurity expertise.

Before: Large critical infrastructure organization

In large critical infrastructure operations, OT and IT teams work in separate silos. The OT security team needs to quickly assess and prioritize alerts, but their system floods them with notifications:

  • Multiple new device connected to the ICS network alerts
  • Multiple failed logins to HMI detected
  • Multiple Unusual Modbus/TCP commands detected
  • Repeated outbound OT traffic to IT destinations

At first glance, these alerts seem important, but without context, it’s unclear whether they indicate a routine error, a misconfiguration, or an active cyber-attack. They might ask:

  • Are the failed logins just a mistake, or a brute-force attempt?
  • Is the outbound traffic part of a scheduled update, or data exfiltration?

Without correlation across events, the engineer must manually investigate each one—checking logs, cross-referencing network activity, and contacting operators—wasting valuable time. Meanwhile, if it’s a coordinated attack, the adversary may already be disrupting operations.

After: A new workflow with Cyber AI Analyst

With Cyber AI Analyst, the OT security team gets clear, automated correlation of security events, making investigations faster and more efficient:

  • Automated correlation of OT threats: Instead of isolated alerts, Cyber AI Analyst stitches together related events, providing a single, high-confidence incident report that highlights key details.
  • Faster time to meaning: The system connects anomalous behaviors (e.g., failed logins, unusual traffic from an HMI, and unauthorized PLC modifications) into a cohesive narrative, eliminating hours of manual log analysis.
  • Prioritized and actionable alerts: OT security receives clear, ranked incidents, immediately highlighting what matters most.
  • Rapid threat understanding: Security teams know within minutes whether an event is a misconfiguration or a cyber-attack, allowing for faster containment.

With Cyber AI Analyst, large organizations cut through alert noise, accelerate investigations, and detect threats faster—without disrupting OT operations.

An AI-led approach to industrial cybersecurity

Security vendors with a primary focus on IT may lack insight into OT threats. Even OT-focused vendors have limited visibility into IT device exploitation within OT networks, leading to failed ability to detect early indicators of compromise. A comprehensive solution must account for the unique characteristics of various OT environments.

In a world where industrial security is no longer just about protecting OT but securing the entire digital-physical ecosystem as it interacts with the OT network, Darktrace / OT is an AI-driven solution that unifies visibility across IT, IoT and OT, Cloud into one cohesive defense strategy.

Whether an attack originates from an external breach, an insider threat, a supply chain compromise, in the Cloud, OT, or IT domains Cyber AI Analyst ensures that security teams see the full picture - before disruption occurs.

Learn more about Darktrace / OT 

  • Unify IT and OT security under a single platform, ensuring seamless communication and protection for all interconnected devices.
  • Maintain uptime with AI-driven threat containment, stopping attacks without disrupting production.
  • Mitigate risks with or without patches, leveraging MITRE mitigations to reduce attack opportunities.

Download the solution brief to see how Darktrace secures critical infrastructure.

Continue reading
About the author
Daniel Simonds
Director of Operational Technology
Your data. Our AI.
Elevate your network security with Darktrace AI