Blog
/

Inside the SOC

/
August 17, 2023

Successfully Containing an Admin Credential Attack

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
17
Aug 2023
Discover how Darktrace's anomaly-based threat detection thwarted a cyber attack on a customer's network, stopping a malicious actor in their tracks.

What is Admin Credential Abuse?

In an effort to remain undetected by increasingly vigilant security teams, malicious actors across the threat landscape often resort to techniques that allow them to remain ‘quiet’ on the network and carry out their objectives subtly. One such technique often employed by attackers is using highly privileged credentials to carry out malicious activity.

This emphasizes the need to be hyper vigilant and not assume that ‘administrative’ activity using privileged credentials is legitimate. In this way, both internal visibility and defense in-depth are needed, as well as a strong understanding of ‘normal’ administrative activity to then identify any deviations from this.  

In one recent example, Darktrace identified a threat actor attempting to use privileged administrative credentials to move laterally through a customer’s network and compromise two further critical servers. Darktrace DETECT™ identified that this activity was unusual and alerted the customer to early signs of compromise, reconnaissance and lateral movement to the other critical devices, while Darktrace RESPOND™ acted autonomously to inhibit the spread of activity and allowed the customer to quarantine the compromised devices.

Attack Overview and Darktrace Coverage

Over the course of a week in late May 2023, Darktrace observed a compromise on the network of a customer in the Netherlands. The threat actors primarily used living off the land techniques, abusing legitimate administrative credentials and executables to perform unexpected activities. This technique is intended to go under the radar of traditional security tools that are often unable to distinguish between the legitimate or malicious use of privileged credentials.

Darktrace was the only security solution in the customer’s stack that way able to detect and contain the attack, preventing it from spreading through their digital estate.

1. Device Reactivated

On May 22, 2023, Darktrace began to observe traffic originating from a File Server device which prior to this, had been been inactive on the network for some time, with no incoming or outgoing traffic recently observed for this IP. Therefore, upon initiating connections again, Darktrace’s AI tagged the device with the “Re-Activated Device” label. It also tagged the device as an “Internet Facing System”, which could represent an initial point of compromise.

Following this, the device was observed using an administrative credential that was commonly used across network, with no clear indications of brute-force activity or successive login failures preceeding this activity. The unusual use of a known credential on a network can be very difficult to detect for traditional security tools. Darktrace’s anomaly-based detection allows it to recognize subtle deviations in device behavior meaning it is uniquely placed to recognize this type of activity.

2. Reconaissance  

On the following day, the affected device began to perform SMB scans for open 445 ports, and writing files such as srvsvc and winreg, both of which are indicative of network  reconnaissance. Srvsvc is used to enumerate available SMB shares on destination devices which could be used to then write malicious files to these shares, while Winreg (Windows Registry) is used to store information that configures users, applications, and hardware devices [1]. Darktrace also observed the device carrying out DCE_RPC activity and making Windows Management Instrumentation (WMI) enumeration requests to other internal devices.

3. Lateral Movement via SMB

On May 24 and May 30, Darktrace observed the same device writing files over SMB to a number of other internal devices, including an SMB server and the Domain Controller. Darktrace identified that these writers were to privileged credential paths, such as C$ and ADMIN$, and it further recognized that the device was using the compromised administrative credential.

The files included remote command executable files (.exe) and batch scripts which execute commands upon clicking in a serial order. This behavior is indicative of a threat actor performing lateral movement in an attempt to infect other devices and strengthen their foothold in the network.

Files written:

·       LogConverter.bat

·       sql.bat

·       Microsoft.NodejsTools.PressAnyKey.exe

·       PSEXESVC.exe

·       Microsoft.NodejsTools.PressAnyKey.lnk

·       CG6oDkyFHl3R.t

5. Reconnaissance Spread

Around the same time as the observed lateral movement activity, between May 24 and May 30, the initially compromised device continued SMB and DCE_RPC activity, mainly involving SMB writes of files such as srvsvc, and PSEXESVC.exe.

Then, on May 28, Darktrace identified another internal Domain Controller engaging in similar suspicious behavior to the original compromised device. This included network scanning, enumeration and service control activity, indicating a spread of further malicious reconnaissance.

Following the successful detection of this activity, Darktrace’s Cyber AI Analyst launched autonomous investigations which was able to correlate incidents from multiple affected devices across the network, in doing so connecting multiple incidents into one security event.

Figure 1: Cyber AI Analyst connecting multiple events into one incident
Figure 2: Cyber AI Analyst investigation process to identify suspicious activity.

6. Lateral Movement

Alongside these SMB writes, the initially compromised device was seen connecting to various internal devices over ports associated with administrative protocols such as Remote Desktop Protocol (RDP). It also made a high volume of NTLM login failures for the credential ‘administrator’, suggesting that the malicious actor was attempting to brute-force an administrative credential.

7. Suspicious External Activity

Following earlier SMB writes from the initially compromised device to the Domain Controller server, the Domain Controller was seen making an unusual volume of external connections to rare endpoints which could indicate malicious command and control (C2) communication.

Alongside this activity, between May 30 and June 1, Darktrace also observed an unusually large number (over 12 million) of incoming connections from external endpoints. This activity is likely indicative of an attempted Denial of Service (DoS) attack.

Endpoints include:

·       45.15.145[.]92

·       198.2.200[.]89

·       162.211.180[.]215

Figure 3: Graphing function in the Darktrace UI showing the observed spike of inbound communication from external endpoints, indicating a potential DoS attack.

8. Reconnaissance and RDP activity

On May 31, the initially compromised device was seen creating an administrative RDP session with cookie ‘Administr’. Using the initially compromised administrative credential, further suspicious SMB activity was observed from the compromised devices on the same day including further SMB Enumeration, service control, PsExec remote command execution, and writes of another suspicious batch script file to various internal devices.

Darktrace RESPOND Coverage

Darktrace RESPOND’s autonomous response capabilities allowed it to take instantaneous preventative action against the affected devices as soon as suspicious activity was identified, consequently inhibiting the spread of this attack.

Specifically, Darktrace RESPOND was able to block suspicious connections to multiple internal devices and ports, among them port 445 which was used by threat actors to perform SMB scanning, for one hour. As a result of the autonomous actions carried out by Darktrace, the attack was stopped at the earliest possible stage.

Figure 4: Autonomous RESPOND actions taken against initially compromised devices.

In addition to these autonomous actions, the customer was able to further utilize RESPOND for containment purposes by manually actioning some of the more severe actions suggested by RESPOND, such as quarantining compromised devices from the rest of the network for a week.

Figure 5: Manually applied RESPOND actions to quarantine compromised devices for one week.

Conclusion

As attackers continue to employ harder to detect living off the land techniques to exploit administrative credentials and move laterally across networks, it is paramount for organizations to have an intelligent decision maker that can recgonize the subtle deviations in device behavior.

Thanks to its Self-Learning AI, Darktrace is uniquely placed to understand its customer’s networks, allowing it to recognize unusual or uncommon activity for individual devices or user credentials, irrespective of whether this activity is typically considered as legitimate.

In this case, Darktrace was the only solution in the customer’s security stack that successfully identified and mitigated this attack. Darktrace DETECT was able to identify the the early stages of the compromise and provide full visibility over the kill chain. Meanwhile, Darktrace RESPOND moved at machine-speed, blocking suspicious connections and preventing the compromise from spreading across the customer’s network.

Appendices

Darktrace DETECT Model Breaches

Anomalous Connection / High Volume of New or Uncommon Service Control

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / SMB Enumeration

Anomalous Connection / Unusual Admin RDP Session

Anomalous Connection / Unusual Admin SMB Session

Anomalous File / Internal / Executable Uploaded to DC

Anomalous File / Internal / Unusual SMB Script Write

Anomalous Server Activity / Outgoing from Server

Anomalous Server Activity / Possible Denial of Service Activity

Antigena / Network / Insider Threat / Antigena Network Scan Block

Antigena / Network / Insider Threat / Antigena SMB Enumeration Block

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena / Network / External Threat / Antigena File then New Outbound Block

Compliance / Outgoing NTLM Request from DC

Compliance / SMB Drive Write

Device / Anomalous NTLM Brute Force

Device / ICMP Address Scan  

Device / Internet Facing Device with High Priority Alert

Device / Large Number of Model Breaches

Device / Large Number of Model Breaches from Critical Network Device

Device / Multiple Lateral Movement Model Breaches

Device / Network Scan

Device / New or Uncommon SMB Named Pipe

Device / New or Uncommon WMI Activity

Device / New or Unusual Remote Command Execution

Device / Possible SMB/NTLM Brute Force

Device / RDP Scan

Device / SMB Lateral Movement

Device / SMB Session Brute Force (Admin)

Device / Suspicious SMB Scanning Activity

Darktrace RESPOND Model Breaches

Antigena / Network / Insider Threat / Antigena Network Scan Block

Antigena / Network / Insider Threat / Antigena SMB Enumeration Block

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena / Network / External Threat / Antigena File then New Outbound Block

Cyber AI Analyst Incidents

Extensive Suspicious Remote WMI Activity

Extensive Unusual Administrative Connections

Large Volume of SMB Login Failures from Multiple Devices

Port Scanning

Scanning of Multiple Devices

SMB Writes of Suspicious Files

Suspicious Chain of Administrative Connections

Suspicious DCE_RPC Activity

TCP Scanning of Multiple Devices

MITRE ATT&CK Mapping

RECONNAISSANCE
T1595 Active Scanning
T1589.001 Gathering Credentials

CREDENTIAL ACCESS
T1110 Brute Force

LATERAL MOVEMENT
T1210 Exploitation of Remote Services
T1021.001 Remote Desktop Protocol

COMMAND AND CONTROL
T1071 Application Layer Protocol

IMPACT
T1498.001 Direct Network Flood

References

[1] https://learn.microsoft.com/en-us/troubleshoot/windows-server/performance/windows-registry-advanced-users

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Zoe Tilsiter
Cyber Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

November 19, 2024

/
No items found.

Darktrace Leading the Future of Network Detection and Response with Recognition from KuppingerCole

Default blog imageDefault blog image

KuppingerCole has recognized Darktrace as an overall Leader, Product Leader, Market Leader and Innovation Leader in the KuppingerCole Leadership Compass: Network Detection and Response (2024).

With the perimeter all but dissolved, Network Detection and Response (NDR) tools are quickly becoming a critical component of the security stack, as the main tool to span the modern network. NDRs connect on-premises infrastructure to cloud, remote workers, identities, SaaS applications, and IoT/OT – something not available to EDR that requires agents and isolates visibility to individual devices.

KuppingerCole Analysts AG designated Darktrace an ‘Overall Leader’ position because of our continual innovation around user-led security. Self-Learning AI together with automated triage through Cyber AI Analyst and real-time autonomous response actions have been instrumental to security teams in stopping potential threats before they become a breach. With this time saved, Darktrace is leading beyond reactive security to truly harden a network, allowing the team to spend more time in preventive security measures.

Network Detection and Response protects where others fail to reach

NDR solutions operate at the network level, deploying inside or parallel to your network to ingest raw traffic via virtual or physical sensors. This gives them unprecedented potential to identify anomalies and possible breaches in any network - far beyond simple on-prem, into dynamic virtual environments, cloud or hybrid networks, cloud applications, and even remote devices accessing the corporate network via ZTNA or VPN.

Rather than looking at processes level data, NDR can detect the lateral movement of an adversary across multiple assets by analyzing network traffic patterns which endpoint solutions may not be able to identify [1]. In the face of a growing, complex environment, organizations large and small, will benefit from using NDRs either in conjunction, or as the foundation for, their Extended Detection and Response (XDR) for a unified view that improves their overall threat detection, ease of investigation and faster response times.

Today's NDR solutions are expected to include advanced ML and artificial intelligence (AI) algorithms [1]

Traditional IDS & IPS systems are labor intensive, requiring continuous rule creation, outdated signature maintenance, and manual monitoring for false positives or incorrect actions. This is no longer viable against a higher volume and changing landscape, making NDR the natural network tool to level against these evolutions. The role of AI in NDRs is designed to meet this challenge, “to reduce both the labor need for analysis and false positives, as well as add value by improving anomaly detection and overall security posture” .

Celebrating success in leadership and innovation

Darktrace is proud to have been recognized as an NDR “Overall Leader” in KuppingerCole Analyst AG’s Leadership Compass. The report gave further recognition to Darktrace as a ‘Product Leader”, “Innovation Leader” and “Market Leader”.

Maximum scores were received for core product categories, in addition to market presence and financial strength. Particular attention was directed to our innovation. This year has seen several NDR updates via Darktrace’s ActiveAI Security Platform version 6.2 which has enhanced investigation workflows and provided new AI transparency within the toolset.

Positive scores were also received for Darktrace’s deployment ecosystem and surrounding support, minimizing the need for extraneous integrations through a unique platform architecture that connects with over 90 other vendors.

High Scores received in Darktrace’s KuppingerCole Spider Chart across Core NDR capability areas
Figure 1: High Scores received in Darktrace’s KuppingerCole Spider Chart across Core NDR capability areas

Darktrace’s pioneering AI approach sets it apart

Darktrace / NETWORK’s approach is fundamentally different to other NDRs. Continual anomaly-based detection (our Self-Learning AI), understands what is normal across each of your network entities, and then examines deviations from these behaviors rather than needing to apply static rules or ML to adversary techniques. As a result, Darktrace / NETWORK can focus on surfacing the novel threats that cannot be anticipated, whilst our proactive solutions expose gaps that can be exploited and reduce the risk of known threats.    

Across the millions of possible network events that may occur, Darktrace’s Cyber AI Analyst reduces that manual workload for SOC teams by presenting only what is most important in complete collated incidents. This accelerates SOC Level 2 analyses of incidents by 10x2, giving time back, first for any necessary response and then for preventive workflows.

Finally, when incidents begin to escalate, Darktrace can natively (or via third-party) autonomously respond and take precise actions based on a contextual understanding of both the affected assets and incident in question so that threats can be disarmed without impacting wider operations.

Within the KuppingerCole report, several standout strengths were listed:

  • Cyber AI Analyst was celebrated as a core differentiator, enhancing both visibility and investigation into critical network issues and allowing a faster response.
  • Darktrace / NETWORK was singled for its user benefits. Both a clear interface for analysts with advanced filtering and analytical tools, and efficient role-based access control (RBAC) and configuration options for administrators.
  • At the product level, Darktrace was recognized for complete network traffic analysis (NTA) capabilities allowing extensive analysis into components like application use/type, fingerprinting, source/destination communication, in addition to comprehensive protocol support across a range of network device types from IT, OT, IoT and mobiles and detailed MITRE ATT&CK mapping.
  • Finally, at the heart of it, Darktrace’s innovation was highlighted in relation to its intrinsic Self Learning AI, utilizing multiple layers of deep learning, neural networks, LLMs, NLP, Generative AI and more to understand network activity and filter it for what’s critical on an individual customer level.

Going beyond reactive security

Darktrace’s visibility and AI-enabled detection, investigation and response enable security teams to focus on hardening gaps in their network through contextual relevance & priority. Darktrace / NETWORK explicitly gives time back to security teams allowing them to focus on the bigger strategic and governance workflows that sometimes get overlooked. This is enabled through proactive solutions intrinsically connected to our NDR:

  • Darktrace / Proactive Exposure Management, which looks beyond just CVE risks to instead discover, prioritize and validate risks by business impact and how to mobilize against them early, to reduce the number of real threats security teams face.
  • Darktrace / Incident Readiness & Recovery, a solution rather than service-based approach to incident response (IR) that lets teams respond in the best way to each incident and proactively test their familiarity and effectiveness of IR workflows with sophisticated incident simulations involving their own analysts and assets.

Together, these solutions allow Darktrace / NETWORK to go beyond the traditional NDR and shift teams to a more hardened and proactive state.

Putting customers first

Customers continue to sit at the forefront of Darktrace R&D, with their emerging needs and pain points being the direct inspiration for our continued innovation.

This year Darktrace / NETWORK has protected thousands of customers against the latest attacks, from data exfil and destruction, to unapproved privilege escalation and ransomware including strains like Medusa, Qilin and AlphV BlackCat.

In each instance, Darktrace / NETWORK was able to provide a holistic lens of the anomalies present in their traffic, collated those that were important, and either responded or gave teams the ability to take targeted actions against their threats – even when adversaries pivoted. In one example of a Gootloader compromise, Darktrace ensured a SOC went from detection to recovery within 5 days, 92.8% faster than the average containment time of 69 days.

Results like these, focused on user-led security, have secured Darktrace’s position within the latest NDR Leadership Compass.

To find out more about what makes Darktrace / NETWORK special, read the full KuppingerCole report.

References

[1] Osman Celik, KuppingerCole Leadership Compass:Network Detection and Response (2024)

[2] Darktrace's AI Analyst customer fleet data

[3] https://www.ibm.com/reports/data-breach

Continue reading
About the author
Gabriel Few-Wiegratz
Product Marketing Manager

Blog

/

November 18, 2024

/

Inside the SOC

From Royal to BlackSuit: Understanding the Tactics and Impact of a Sophisticated Ransomware Strain

Default blog imageDefault blog image

What is BlackSuit Ransomware?

Since late 2023, Darktrace has detected BlackSuit ransomware infiltrating multiple customer networks in the US. This ransomware has targeted a wide range of industries, including arts, entertainment, real estate, public administration, defense, and social security.

Emerging in May 2023, BlackSuit is believed to be a spinoff of Royal ransomware due to similarities in code and Conti, and most likely consists of Russian and Eastern European hackers [1]. Recorded Future reported that the ransomware had affected 95 organizations worldwide, though the actual number is likely much higher [2]. While BlackSuit does not appear to focus on any particular sector, it has targeted multiple organizations in the healthcare, education, IT, government, retail and manufacturing industries [3]. Employing double extortion tactics, BlackSuit not only encrypts files but also steals sensitive data to leverage ransom payments.

BlackSuit has demanded over USD 500 million in ransoms, with the highest individual demand reaching USD 60 million [4]. Notable targets include CDK Global, Japanese media conglomerate Kadokawa, multiple educational institutions, Octapharma Plasma, and the government of Brazil [5][6][7][8].

Darktrace’s Coverage of BlackSuit Ransomware Attack

Case 1, November 2023

The earliest attack on a Darktrace customer by BlackSuit was detected at the start of November 2023. The unusual network activity began on a weekend—a time commonly chosen by ransomware groups to increase their chances of success, as many security teams operate with reduced staff. Darktrace identified indicators of the attackers’ presence on the network for almost two weeks, during which a total of 15 devices exhibited suspicious behavior.

The attack commenced with unusual internal SMB (Server Message Block) connections using a compromised service account. An internal device uploaded an executable (zzza.exe) to a domain controller (DC) and shortly after, wrote a script (socks5.ps1) to another device. According to a Cybersecurity Advisory from the CISA (Cybersecurity and Infrastructure Security Agency, US), the script file was a PowerShell reverse proxy [9].

Approximately an hour and a half later, the device to which the script was written exhibited uncommon WMI (Windows Management Instrumentation) activity. Two hours after receiving the executable file, the DC was observed making an outgoing NTLM request, using PowerShell to remotely execute commands, distributing differently named executable files (<PART OF THE CUSTOMER’S NAME>.exe), and controlling services on other devices.

Eighteen hours after the start of the unusual activity, Darktrace detected another device making repeated connections to “mystuff.bublup[.]com”, which the aforementioned CISA Advisory identifies as a domain used by BlackSuit for data exfiltration [9].

About ten minutes after the suspicious executables were distributed across the network, and less than 24 hours after the start of the unusual activity, file encryption began. A total of ten devices were seen appending the “.blacksuit” extension to files saved on other devices using SMB, as well as writing ransom notes (readme.blacksuit.txt). The file encryption lasted less than 20 minutes.

 An example of the contents of a BlackSuit ransom note being written over SMB.
Figure 1: An example of the contents of a BlackSuit ransom note being written over SMB.

During this compromise, external connections to endpoints related to ConnectWise’s ScreenConnect remote management tool were also seen from multiple servers, suggesting that the tool was likely being abused for command-and-control (C2) activity. Darktrace identified anomalous connectivity associated with ScreenConnect was seen up to 11 days after the start of the attack.

10 days after the start of the compromise, an account belonging to a manager was detected adding “.blacksuit” extensions to the customer’s Software-a-Service (SaaS) resources while connecting from 173.251.109[.]106. Six minutes after file encryption began, Darktrace flagged the unusual activity and recommended a block. However, since Autonomous Response mode was not enabled, the customer’s security team needed to manually confirm the action. Consequently, suspicious activity continued for about a week after the initial encryption. This included disabling authentication on the account and an unusual Teams session initiated from the suspicious external endpoint 216.151.180[.]147.

Case 2, February 2024

Another BlackSuit compromise occurred at the start of February 2024, when Darktrace identified approximately 50 devices exhibiting ransomware-related activity in another US customer’s environment. Further investigation revealed that a significant number of additional devices had also been compromised. These devices were outside Darktrace’s purview to the customer’s specific deployment configuration. The threat actors managed to exfiltrate around 4 TB of data.

Initial access to the network was gained via a virtual private network (VPN) compromise in January 2024, when suspicious connections from a Romanian IP address were detected. According to CISA, the BlackSuit group often utilizes the services of initial access brokers (IAB)—actors who specialize in infiltrating networks, such as through VPNs, and then selling that unauthorized access to other threat actors [9]. Other initial access vectors include phishing emails, RDP (Remote Desktop Protocol) compromise, and exploitation of vulnerable public-facing applications.

Similar to the first case, the file encryption began at the end of the working week. During this phase of the attack, affected devices were observed encrypting files on other internal devices using two compromised administrator accounts. The encryption activity lasted for approximately six and a half hours. Multiple alerts were sent to the customer from Darktrace’s Security Operations Centre (SOC) team, who began reviewing the activity within four minutes of the start of the file encryption.

Darktrace’s Cyber AI Analyst clustering together multiple events related to unusual activity on the network, including file encryption over SMB by BlackSuit.
Figure 2: Darktrace’s Cyber AI Analyst clustering together multiple events related to unusual activity on the network, including file encryption over SMB by BlackSuit.
Figure 3: A spike in model alerts on the day when file encryption by BlackSuit was observed in the network.

In this case, the threat actor utilized SystemBC proxy malware for command and control (C2). A domain controller (DC) was seen connecting to 137.220.61[.]94 on the same day the file encryption took place. The DC was also observed connecting to a ProxyScrape domain around the same time, which is related to the SOCKS5 protocol used by SystemBC. During this compromise, RDP, SSH, and SMB were used for lateral movement within the network.

Figure 4: A Cyber AI Analyst investigation alerting to a device on the VPN subnet making suspicious internal SSH connections due to malicious actors moving laterally within the network.

Signs of threat actors potentially being on the network were observed as early as two days prior to the file encryption. This included unusual internal network scanning via multiple protocols (ICMP, SMB, RDP, etc.), credential brute-forcing, SMB access failures, and anonymous SMBv1 sessions. These activities were traced to IP addresses belonging to two desktop devices in the VPN subnet associated with two regular employee user accounts. Threat actors were seemingly able to exploit at least one of these accounts due to LDAP legacy policies being in place on the customer’s environment.

A Cyber AI Analyst incident summary alerting to a device on the VPN subnet conducting internal reconnaissance.
Figure 5: A Cyber AI Analyst incident summary alerting to a device on the VPN subnet conducting internal reconnaissance.
Examples of the proposed Darktrace Autonomous Response actions on the day BlackSuit initiated file encryption.
Figure 6: Examples of the proposed Darktrace Autonomous Response actions on the day BlackSuit initiated file encryption.

Case 3, August 2024

The most recently observed BlackSuit compromise occurred in August 2024, when a device was observed attempting to brute-force the credentials of an IT administrator. This activity continued for 11 days.

Once the admin’s account was successfully compromised, network scanning, unusual WMI, and SAMR (Security Account Manager Remote protocol) activity followed. A spike in the use of this account was detected on a Sunday—once again, the attackers seemingly targeting the weekend—when the account was used by nearly 50 different devices.

The compromised admin’s account was exploited for data gathering via SMB, resulting in the movement of 200 GB of data between internal devices in preparation for exfiltration. The files were then archived using the naming convention “*.part<number>.rar”.

Around the same time, Darktrace observed data transfers from 19 internal devices to “bublup-media-production.s3.amazonaws[.]com,” totaling just over 200 GB—the same volume of data gathered internally. Connections to other Bublup domains were also detected. The internal data download and external data transfer activity took approximately 8-9 hours.

Unfortunately, Darktrace was not configured in Autonomous Response mode at the time of the attack, meaning any mitigative actions to stop the data gathering or exfiltration required human confirmation.  

One of the compromised devices was seen sending 80 GB of data to bublup-media-production.s3.amazonaws[.]com within a span of 4 hours.
Figure 7: One of the compromised devices was seen sending 80 GB of data to bublup-media-production.s3.amazonaws[.]com within a span of 4 hours.

Once the information was stolen, the threat actor moved on to the final stage of the attack—file encryption. Five internal devices, using either the compromised admin account or connecting via anonymous SMBv1 sessions, were seen encrypting files and writing ransom notes to five other devices on the network. The attempts at file encryption continued for around two hours, but Darktrace’s Autonomous Response capability was able to block the activity and prevent the attack from escalating.

Conclusion

The persistent and evolving threat posed by ransomware like BlackSuit underscores the critical importance of robust cybersecurity measures across all sectors. Since its emergence in 2023, BlackSuit has demonstrated a sophisticated approach to infiltrating networks, leveraging double extortion tactics, and demanding substantial ransoms. The cases highlighted above illustrate the varied methods and persistence of BlackSuit attackers, from exploiting VPN vulnerabilities to abusing remote management tools and targeting off-hours to maximize impact.

Although many similar connection patterns, such as the abuse of Bublup services for data exfiltration or the use of SOCKS5 proxies for C2, were observed during cases investigated by Darktrace, BlackSuit actors are highly sophisticated and tailors their attacks to each target organization. The consequences of a successful attack can be highly disruptive, and remediation efforts can be time-consuming and costly. This includes taking the entire network offline while responding to the incident, restoring encrypted files from backups (if available), dealing with damage to the organization’s reputation, and potential lawsuits.

These BlackSuit ransomware incidents emphasize the need for continuous vigilance, timely updates to security protocols, and the adoption of autonomous response technologies to swiftly counteract such attacks. As ransomware tactics continue to evolve, organizations must remain agile and informed to protect their critical assets and data. By learning from these incidents and enhancing their cybersecurity frameworks, organizations can better defend against the relentless threat of ransomware and ensure the resilience of their operations in an increasingly digital world.

Credit to Signe Zaharka (Principal Cyber Analyst) and Adam Potter (Senior Cyber Analyst)

Insights from Darktrace’s First 6: Half-year threat report for 2024

First 6: half year threat report darktrace screenshot

Darktrace’s First 6: Half-Year Threat Report 2024 highlights the latest attack trends and key threats observed by the Darktrace Threat Research team in the first six months of 2024.

  • Focuses on anomaly detection and behavioral analysis to identify threats
  • Maps mitigated cases to known, publicly attributed threats for deeper context
  • Offers guidance on improving security posture to defend against persistent threats

Appendices

Darktrace Model Detections

Anomalous Connection / Data Sent to Rare Domain

Anomalous Connection / High Volume of New or Uncommon Service Control

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / Rare WinRM Outgoing

Anomalous Connection / SMB Enumeration

Anomalous Connection / Suspicious Activity On High Risk Device

Anomalous Connection / Suspicious Read Write Ratio

Anomalous Connection / Suspicious Read Write Ratio and Unusual SMB

Anomalous Connection / Sustained MIME Type Conversion

Anomalous Connection / Uncommon 1 GiB Outbound

Anomalous Connection / Unusual Admin SMB Session

Anomalous File / Internal / Additional Extension Appended to SMB File

Anomalous File / Internal / Executable Uploaded to DC

Anomalous File / Internal / Unusual SMB Script Write

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Anomalous Server Activity / Outgoing from Server

Anomalous Server Activity / Rare External from Server

Anomalous Server Activity / Write to Network Accessible WebRoot

Compliance / Outgoing NTLM Request from DC

Compliance / Remote Management Tool On Server

Compliance / SMB Drive Write

Compromise / Beacon to Young Endpoint

Compromise / Beaconing Activity To External Rare

Compromise / Ransomware / Possible Ransom Note Read

Compromise / Ransomware / Possible Ransom Note Write

Compromise / Ransomware / SMB Reads then Writes with Additional Extensions

Compromise / Ransomware / Suspicious SMB Activity

Device / Anomalous RDP Followed By Multiple Model Breaches

Device / EXE Files Distributed to Multiple Devices

Device / Internet Facing Device with High Priority Alert

Device / Large Number of Model Breaches

Device / Large Number of Model Breaches from Critical Network Device

Device / Multiple Lateral Movement Model Breaches

Device / Network Scan

Device / New or Uncommon WMI Activity

Device / New or Unusual Remote Command Execution

Device / New User Agent To Internal Server

Device / SMB Lateral Movement

Device / SMB Session Brute Force (Admin)

Device / Suspicious SMB Scanning Activity

Device / Unusual LDAP Query For Domain Admins

SaaS / Access / Teams Activity from Rare Endpoint

SaaS / Resource / SaaS Resources With Additional Extensions

SaaS / Unusual Activity / Disabled Strong Authentication

SaaS / Unusual Activity / Multiple Unusual SaaS Activity Scores

SaaS / Unusual Activity / Unusual SaaS Activity Score

SaaS / Unusual Activity / Unusual Volume of SaaS Modifications

Unusual Activity / Anomalous SMB Delete Volume

Unusual Activity / Anomalous SMB Move & Write

Unusual Activity / High Volume Client Data Transfer

Unusual Activity / High Volume Server Data Transfer

Unusual Activity / Internal Data Transfer

Unusual Activity / SMB Access Failures

Unusual Activity / Sustained Anomalous SMB Activity

Unusual Activity / Unusual External Data to New Endpoint

User / New Admin Credentials on Client

User / New Admin Credentials on Server

User/ Kerberos Password Bruteforce

Autonomous Response Models

Antigena / Network / External Threat / Antigena File then New Outbound Block

Antigena / Network / External Threat / Antigena Ransomware Block

Antigena / Network / External Threat / Antigena Suspicious Activity Block

Antigena / Network / External Threat / SMB Ratio Antigena Block

Antigena / Network / Insider Threat / Antigena Internal Anomalous File Activity

Antigena / Network / Insider Threat / Antigena Internal Data Transfer Block

Antigena / Network / Insider Threat / Antigena Large Data Volume Outbound Block

Antigena / Network / Insider Threat / Antigena Network Scan Block

Antigena / Network / Insider Threat / Antigena Unusual Privileged User Activities Block

Antigena / Network / Insider Threat / Antigena Unusual Privileged User Activities Pattern of Life Block

Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Antigena / Network / Significant Anomaly / Repeated Antigena Breaches

Antigena / SaaS / Antigena Unusual Activity Block

List of Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

.blacksuit - File extension – When encrypting the files, this extension is appended to the filename – High

readme.blacksuit.txt – ransom note - A file demanding cryptocurrency payment in exchange for decrypting the victim's files and not leaking the stolen data – High

mystuff.bublup[.]com, bublup-media-production.s3.amazonaws[.]com – data exfiltration domains related to an organization and project management app that has document sharing functionality – High

137.220.61[.]94:4001 – SystemBC C2 related IP address (this tool is often used by other ransomware groups as well) - Medium

173.251.109[.]106 – IP address seen during a SaaS BlackSuit compromise (during file encryption) – Medium

216.151.180[.]147 – IP address seen during a SaaS BlackSuit compromise (during an unusual Teams session) - Medium

MITRE ATT&CK Mapping

Tactic - Technqiue

Account Manipulation - PERSISTENCE - T1098

Alarm Suppression - INHIBIT RESPONSE FUNCTION - T0878

Application Layer Protocol - COMMAND AND CONTROL - T1071

Automated Collection - COLLECTION - T1119

Block Command Message - INHIBIT RESPONSE FUNCTION - T0803

Block Reporting Message - INHIBIT RESPONSE FUNCTION - T0804

Browser Extensions - PERSISTENCE - T1176

Brute Force I/O - IMPAIR PROCESS CONTROL - T0806

Brute Force - CREDENTIAL ACCESS - T1110

Client Configurations - RECONNAISSANCE - T1592.004 - T1592

Cloud Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078.004 - T1078

Data Destruction - IMPACT - T1485

Data Destruction - INHIBIT RESPONSE FUNCTION - T0809

Data Encrypted for Impact - IMPACT - T1486

Data from Cloud Storage Object - COLLECTION - T1530

Data Staged - COLLECTION - T1074

Domain Groups - DISCOVERY - T1069.002 - T1069

Email Collection - COLLECTION - T1114

Exfiltration Over C2 Channel - EXFILTRATION - T1041

Exfiltration to Cloud Storage - EXFILTRATION - T1567.002 - T1567

Exploit Public - Facing Application - INITIAL ACCESS - T1190

Exploitation for Privilege Escalation - PRIVILEGE ESCALATION - T0890

Exploitation of Remote Services - LATERAL MOVEMENT - T1210

File and Directory Discovery - DISCOVERY - T1083

File Deletion - DEFENSE EVASION - T1070.004 - T1070

IP Addresses - RECONNAISSANCE - T1590.005 - T1590

Lateral Tool Transfer - LATERAL MOVEMENT - T1570

LLMNR/NBT - NS Poisoning and SMB Relay - CREDENTIAL ACCESS, COLLECTION - T1557.001 - T1557

Modify Alarm Settings - INHIBIT RESPONSE FUNCTION - T0838

Modify Control Logic - IMPAIR PROCESS CONTROL, INHIBIT RESPONSE FUNCTION - T0833

Modify Parameter - IMPAIR PROCESS CONTROL - T0836

Network Service Scanning - DISCOVERY - T1046

Network Share Discovery - DISCOVERY - T1135

Pass the Hash - DEFENSE EVASION, LATERAL MOVEMENT - T1550.002 - T1550

RDP Hijacking - LATERAL MOVEMENT - T1563.002 - T1563

Remote Access Software - COMMAND AND CONTROL - T1219

Remote Desktop Protocol - LATERAL MOVEMENT - T1021.001 - T1021

Remote System Discovery - DISCOVERY - T1018

Rename System Utilities - DEFENSE EVASION - T1036.003 - T1036

Scanning IP Blocks - RECONNAISSANCE - T1595.001 - T1595

Scheduled Transfer - EXFILTRATION - T1029

Service Execution - EXECUTION - T1569.002 - T1569

Service Stop - IMPACT - T1489

SMB/Windows Admin Shares - LATERAL MOVEMENT - T1021.002 - T1021

Stored Data Manipulation - IMPACT - T1565.001 - T1565

Taint Shared Content - LATERAL MOVEMENT - T1080

Valid Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078

Vulnerability Scanning - RECONNAISSANCE - T1595.002 - T1595

Web Protocols - COMMAND AND CONTROL - T1071.001 - T1071

Web Services - RESOURCE DEVELOPMENT - T1583.006 - T1583

Web Shell - PERSISTENCE - T1505.003 - T1505

Windows Management Instrumentation - EXECUTION - T1047

Windows Remote Management - LATERAL MOVEMENT - T1021.006 - T1021

References

1.     https://www.trendmicro.com/en_us/research/23/e/investigating-blacksuit-ransomwares-similarities-to-royal.html

2.     https://www.reuters.com/technology/cybersecurity/blacksuit-hacker-behind-cdk-global-attack-hitting-us-car-dealers-2024-06-27/

3.     https://www.sentinelone.com/anthology/blacksuit/

4.     https://thehackernews.com/2024/08/fbi-and-cisa-warn-of-blacksuit.html

5.     https://www.techtarget.com/whatis/feature/The-CDK-Global-outage-Explaining-how-it-happened

6.     https://therecord.media/japanese-media-kadokawa-investigating-cyber

7.     https://therecord.media/plasma-donation-company-cyberattack-blacksuit

8.     https://thecyberexpress.com/government-of-brazil-cyberattack-by-blacksuit/

9.     https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-061a

Continue reading
About the author
Signe Zaharka
Senior Cyber Security Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI