Blog
/

Inside the SOC

/
July 4, 2024

A Busy Agenda: Darktrace’s Detection of Qilin Ransomware-as-a-Service Operator

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Jul 2024
This blog examines the tactics, techniques and procedures associated with the notorious Ransomware-as-a-Service operator Qilin. Darktrace’s Threat Research team investigated several examples of Qilin actors targeting Darktrace customers between 2022 and 2024.

Qilin ransomware has recently dominated discussions across the cyber security landscape following its deployment in an attack on Synnovis, a UK-based medical laboratory company. The ransomware attack ultimately affected patient services at multiple National Health Service (NHS) hospitals that rely on Synnovis diagnostic and pathology services. Qilin’s origins, however, date back further to October 2022 when the group was observed seemingly posting leaked data from its first known victim on its Dedicated Leak Site (DLS) under the name Agenda[1].

The Darktrace Threat Research team investigated network artifacts related to Qilin and identified three probable cases of the ransomware across the Darktrace customer base between June 2022 and May 2024.

Qilin Ransomware-as-a-Service Operator

Qilin operates as a Ransomware-as-a-Service (RaaS) that employs double extortion tactics, whereby harvested data is exfiltrated and threatened of publication on the group's DLS, which is hosted on Tor. Qilin ransomware has samples written in both the Golang and Rust programming languages, making it compilable with various operating systems, and is highly customizable. When building Qilin ransomware variants to be used on their target(s), affiliates can configure settings such as the encryption mode (i.e., skip-step, percent, and speed), the file extension being appended, files, extensions and directories to be skipped during the encryption, and the processes and services to be terminated, among others[1] [2].  

Trend Micro analysts, who were the first to discover Qilin samples in August 2022, when the name "Agenda" was still used in ransom notes, found that each analyzed sample was customized for the intended victims and that "unique company IDs were used as extensions of encrypted files" [3]. This information is configurable from within the Qilin's affiliate panel's 'Targets' section, shown below. The panel's background image features the eponym Chinese legendary chimerical creature Qilin (pronounced “Ke Lin”). Despite this Chinese mythology reference, Russian language was observed being used by a Qilin operator in an underground forum post aimed at hiring affiliates and advertising their RaaS operation[2].

Figure 1: Qilin ransomware’s affiliate panel.

Qilin's RaaS program purportedly has an attractive affiliates' payment structure, with affiliates allegedly able to earn 80% of ransom payments of USD 3m or less and 85% for payments above that figure[2], making it a possibly appealing option in the RaaS ecosystem.  Publication of stolen data and ransom payment negotiations are purportedly handled by Qilin operators. Qilin affiliates have been known to target companies located around the world and within a variety of industries, including critical sectors such as healthcare and energy.

As Qilin is a RaaS operation, the choice of targets does not necessarily reflect Qilin operators' intentions, but rather that of its affiliates.  Similarly, the tactics, techniques, procedures (TTPs) and indicators of compromise (IoC) identified by Darktrace are associated with the given affiliate deploying Qilin ransomware for their own purpose, rather than TTPs and IoCs of the Qilin group. Likewise, initial vectors of infection may vary from affiliate to affiliate. Previous studies show that initial access to networks were gained via spear phishing emails or by leveraging exposed applications and interfaces.

Differences have been observed in terms of data exfiltration and potential C2 external endpoints, suggesting the below investigations are not all related to the same group or actor(s).

Darktrace’s Threat Research Investigation

June 2022

Darktrace first detected an instance of Qilin ransomware back in June 2022, when an attacker was observed successfully accessing a customer’s Virtual Private Network (VPN) and compromising an administrative account, before using RDP to gain access to the customer’s Microsoft System Center Configuration Manager (SCCM) server

From there, an attack against the customer's VMware ESXi hosts was launched. Fortunately, a reboot of their virtual machines (VM) caught the attention of the security team who further uncovered that custom profiles had been created and remote scripts executed to change root passwords on their VM hosts. Three accounts were found to have been compromised and three systems encrypted by ransomware.  

Unfortunately, Darktrace was not configured to monitor the affected subnets at the time of the attack. Despite this, the customer was able to work directly with Darktrace analysts via the Ask the Expert (ATE) service to add the subnets in question to Darktrace’s visibility, allowing it to monitor for any further unusual behavior.

Once visibility over the compromised SCCM server was established, Darktrace observed a series of unusual network scanning activities and the use of Kali (a Linux distribution designed for digital forensics and penetration testing). Furthermore, the server was observed making connections to multiple rare external hosts, many using the “[.]ru” Top Level Domain (TLD). One of the external destinations the server was attempting to connect was found to be related to SystemBC, a malware that turns infected hosts into SOCKS5 proxy bots and provides command-and-control (C2) functionality.

Additionally, the server was observed making external connections over ports 993 and 143 (typically associated with the use of the Interactive Message Access Protocol (IMAP) to multiple rare external endpoints. This was likely due to the presence of Tofsee malware on the device.

After the compromise had been contained, Darktrace identified several ransom notes following the naming convention “README-RECOVER-<extension/company_id>.txt”” on the network. This naming convention, as well as the similar “<company_id>-RECOVER-README.txt” have been referenced by open-source intelligence (OSINT) providers as associated with Qilin ransom notes[5] [6] [7].

April 2023

The next case of Qilin ransomware observed by Darktrace took place in April 2023 on the network of a customer in the manufacturing sector in APAC. Unfortunately for the customer in this instance, Darktrace's Autonomous Response was not active on their environment and no autonomous actions were taken to contain the compromise.

Over the course of two days, Darktrace identified a wide range of malicious activity ranging from extensive initial scanning and lateral movement attempts to the writing of ransom notes that followed the aforementioned naming convention (i.e., “README-RECOVER-<extension/company_id>.txt”).

Darktrace observed two affected devices attempting to move laterally through the SMB, DCE-RPC and RDP network protocols. Default credentials (e.g., UserName, admin, administrator) were also observed in the large volumes of SMB sessions initiated by these devices. One of the target devices of these SMB connections was a domain controller, which was subsequently seen making suspicious WMI requests to multiple devices over DCE-RPC and enumerating SMB shares by binding to the ‘server service’ (srvsvc) named pipe to a high number of internal devices within a short time frame. The domain controller was further detected establishing an anomalously high number of connections to several internal devices, notably using the RDP administrative protocol via a default admin cookie.  

Repeated connections over the HTTP and SSL protocol to multiple newly observed IPs located in the 184.168.123.0/24 range were observed, indicating C2 connectivity.  WebDAV user agent and a JA3 fingerprint potentially associated with Cobalt Strike were notably observed in these connections. A few hours later, Darktrace detected additional suspicious external connections, this time to IPs associated with the MEGA cloud storage solution. Storage solutions such as MEGA are often abused by attackers to host stolen data post exfiltration. In this case, the endpoints were all rare for the network, suggesting this solution was not commonly used by legitimate users. Around 30 GB of data was exfiltrated over the SSL protocol.

Darktrace did not observe any encryption-related activity on this customer’s network, suggesting that encryption may have taken place locally or within network segments not monitored by Darktrace.

May 2024

The most recent instance of Qilin observed by Darktrace took place in May 2024 and involved a customer in the US. In this case, Darktrace initially detected affected devices using unusual administrative and default credentials, before additional internal systems were observed making extensive suspicious DCE-RPC requests to a range of internal locations, performing network scanning, making unusual internal RDP connections, and transferring suspicious executable files like 'a157496.exe' and '83b87b2.exe'.  SMB writes of the file "LSM_API_service" were also observed, activity which was considered 100% unusual by Darktrace; this is an RPC service that can be abused to enumerate logged-in users and steal their tokens. Various repeated connections likely representative of C2 communications were detected via both HTTP and SSL to rare external endpoints linked in OSINT to Cobalt Strike use. During these connections, HTTP GET requests for the following URIs were observed:

/asdffHTTPS

/asdfgdf

/asdfgHTTP

/download/sihost64.dll

Notably, this included a GET request a DLL file named "sihost64.dll" from a domain controller using PowerShell.  

Over 102 GB of data may have been transferred to another previously unseen endpoint, 194.165.16[.]13, via the unencrypted File Transfer Protocol (FTP). Additionally, many non-FTP connections to the endpoint could be observed, over which more than 783 GB of data was exfiltrated. Regarding file encryption activity, a wide range of destination devices and shares were targeted.

Figure 2: Advanced Search graph displaying the total volume of data transferred over FTP to a malicious IP.

During investigations, Darktrace’s Threat Research team identified an additional customer, also based in the United States, where similar data exfiltration activity was observed in April 2024. Although no indications of ransomware encryption were detected on the network, multiple similarities were observed with the case discussed just prior. Notably, the same exfiltration IP and protocol (194.165.16[.]13 and FTP, respectively) were identified in both cases. Additional HTTP connectivity was further observed to another IP using a self-signed certificate (i.e., CN=ne[.]com,OU=key operations,O=1000,L=,ST=,C=KM) located within the same ASN (i.e., AS48721 Flyservers S.A.). Some of the URIs seen in the GET requests made to this endpoint were the same as identified in that same previous case.

Information regarding another device also making repeated connections to the same IP was described in the second event of the same Cyber AI Analyst incident. Following this C2 connectivity, network scanning was observed from a compromised domain controller, followed by additional reconnaissance and lateral movement over the DCE-RPC and SMB protocols. Darktrace again observed SMB writes of the file "LSM_API_service", as in the previous case, activity which was also considered 100% unusual for the network. These similarities suggest the same actor or affiliate may have been responsible for activity observed, even though no encryption was observed in the latter case.

Figure 3: First event of the Cyber AI Analyst investigation following the compromise activity.

According to researchers at Microsoft, some of the IoCs observed on both affected accounts are associated with Pistachio Tempest, a threat actor reportedly associated with ransomware distribution. The Microsoft threat actor naming convention uses the term "tempest" to reference criminal organizations with motivations of financial gain that are not associated with high confidence to a known non-nation state or commercial entity. While Pistachio Tempest’s TTPs have changed over time, their key elements still involve ransomware, exfiltration, and extortion. Once they've gained access to an environment, Pistachio Tempest typically utilizes additional tools to complement their use of Cobalt Strike; this includes the use of the SystemBC RAT and the SliverC2 framework, respectively. It has also been reported that Pistacho Tempest has experimented with various RaaS offerings, which recently included Qilin ransomware[4].

Conclusion

Qilin is a RaaS group that has gained notoriety recently due to high-profile attacks perpetrated by its affiliates. Despite this, the group likely includes affiliates and actors who were previously associated with other ransomware groups. These individuals bring their own modus operandi and utilize both known and novel TTPs and IoCs that differ from one attack to another.

Darktrace’s anomaly-based technology is inherently threat-agnostic, treating all RaaS variants equally regardless of the attackers’ tools and infrastructure. Deviations from a device’s ‘learned’ pattern of behavior during an attack enable Darktrace to detect and contain potentially disruptive ransomware attacks.

Credit to: Alexandra Sentenac, Emma Foulger, Justin Torres, Min Kim, Signe Zaharka for their contributions.

References

[1] https://www.sentinelone.com/anthology/agenda-qilin/  

[2] https://www.group-ib.com/blog/qilin-ransomware/

[3] https://www.trendmicro.com/en_us/research/22/h/new-golang-ransomware-agenda-customizes-attacks.html

[4] https://www.microsoft.com/en-us/security/security-insider/pistachio-tempest

[5] https://www.trendmicro.com/en_us/research/22/h/new-golang-ransomware-agenda-customizes-attacks.html

[6] https://www.bleepingcomputer.com/forums/t/790240/agenda-qilin-ransomware-id-random-10-char;-recover-readmetxt-support/

[7] https://github.com/threatlabz/ransomware_notes/tree/main/qilin

Darktrace Model Detections

Internal Reconnaissance

Device / Suspicious SMB Scanning Activity

Device / Network Scan

Device / RDP Scan

Device / ICMP Address Scan

Device / Suspicious Network Scan Activity

Anomalous Connection / SMB Enumeration

Device / New or Uncommon WMI Activity

Device / Attack and Recon Tools

Lateral Movement

Device / SMB Session Brute Force (Admin)

Device / Large Number of Model Breaches from Critical Network Device

Device / Multiple Lateral Movement Model Breaches

Anomalous Connection / Unusual Admin RDP Session

Device / SMB Lateral Movement

Compliance / SMB Drive Write

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / Anomalous DRSGetNCChanges Operation

Anomalous Server Activity / Domain Controller Initiated to Client

User / New Admin Credentials on Client

C2 Communication

Anomalous Server Activity / Outgoing from Server

Anomalous Connection / Multiple Connections to New External TCP Port

Anomalous Connection / Anomalous SSL without SNI to New External

Anomalous Connection / Rare External SSL Self-Signed

Device / Increased External Connectivity

Unusual Activity / Unusual External Activity

Compromise / New or Repeated to Unusual SSL Port

Anomalous Connection / Multiple Failed Connections to Rare Endpoint

Device / Suspicious Domain

Device / Increased External Connectivity

Compromise / Sustained SSL or HTTP Increase

Compromise / Botnet C2 Behaviour

Anomalous Connection / POST to PHP on New External Host

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

Anomalous File / EXE from Rare External Location

Exfiltration

Unusual Activity / Enhanced Unusual External Data Transfer

Anomalous Connection / Data Sent to Rare Domain

Unusual Activity / Unusual External Data Transfer

Anomalous Connection / Uncommon 1 GiB Outbound

Unusual Activity / Unusual External Data to New Endpoint

Compliance / FTP / Unusual Outbound FTP

File Encryption

Compromise / Ransomware / Suspicious SMB Activity

Anomalous Connection / Sustained MIME Type Conversion

Anomalous File / Internal / Additional Extension Appended to SMB File

Compromise / Ransomware / Possible Ransom Note Write

Compromise / Ransomware / Possible Ransom Note Read

Anomalous Connection / Suspicious Read Write Ratio

IoC List

IoC – Type – Description + Confidence

93.115.25[.]139 IP C2 Server, likely associated with SystemBC

194.165.16[.]13 IP Probable Exfiltration Server

91.238.181[.]230 IP C2 Server, likely associated with Cobalt Strike

ikea0[.]com Hostname C2 Server, likely associated with Cobalt Strike

lebondogicoin[.]com Hostname C2 Server, likely associated with Cobalt Strike

184.168.123[.]220 IP Possible C2 Infrastructure

184.168.123[.]219 IP Possible C2 Infrastructure

184.168.123[.]236 IP Possible C2 Infrastructure

184.168.123[.]241 IP Possible C2 Infrastructure

184.168.123[.]247 IP Possible C2 Infrastructure

184.168.123[.]251 IP Possible C2 Infrastructure

184.168.123[.]252 IP Possible C2 Infrastructure

184.168.123[.]229 IP Possible C2 Infrastructure

184.168.123[.]246 IP Possible C2 Infrastructure

184.168.123[.]230 IP Possible C2 Infrastructure

gfs440n010.userstorage.me ga.co[.]nz Hostname Possible Exfiltration Server. Not inherently malicious; associated with MEGA file storage.

gfs440n010.userstorage.me ga.co[.]nz Hostname Possible Exfiltration Server. Not inherently malicious; associated with MEGA file storage.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Alexandra Sentenac
Cyber Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

October 15, 2024

/
No items found.

Navigating buying and adoption journeys for AI cybersecurity tools

Default blog imageDefault blog image

Enterprise AI tools go mainstream

In this dawning Age of AI, CISOs are increasingly exploring investments in AI security tools to enhance their organizations’ capabilities. AI can help achieve productivity gains by saving time and resources, mining intelligence and insights from valuable data, and increasing knowledge sharing and collaboration.  

While investing in AI can bring immense benefits to your organization, first-time buyers of AI cybersecurity solutions may not know where to start. They will have to determine the type of tool they want, know the options available, and evaluate vendors. Research and understanding are critical to ensure purchases are worth the investment.  

Challenges of a muddied marketplace

Key challenges in AI purchasing come from consumer doubt and lack of vendor transparency. The AI software market is buzzing with hype and flashy promises, which are not necessarily going to be realized immediately. This has fostered uncertainty among potential buyers, especially in the AI cybersecurity space.  

As Gartner writes, “There is a general lack of transparency and understanding about how AI-enhanced security solutions leverage AI and the effectiveness of those solutions within real-world SecOps. This leads to trust issues among security leaders and practitioners, resulting in slower adoption of AI features” [1].  

Similarly, only 26% of security professionals report a full understanding of the different types of AI in use within security products.

Given this widespread uncertainty generated through vague hype, buyers must take extra care when considering new AI tools to adopt.  

Goals of AI adoption

Buyers should always start their journeys with objectives in mind, and a universal goal is to achieve return on investment. When organizations adopt AI, there are key aspects that will signal strong payoff. These include:  

  • Wide-ranging application across operations and areas of the business
  • Actual, enthusiastic adoption and application by the human security team  
  • Integration with the rest of the security stack and existing workflows
  • Business and operational benefits, including but not limited to:  
  • Reduced risk
  • Reduced time to response
  • Reduced potential downtime, damage, and disruption
  • Increased visibility and coverage
  • Improved SecOps workflows
  • Decreased burden on teams so they can take on more strategic tasks  

Ideally, most or all these measurements will be fulfilled. It is not enough for AI tools to benefit productivity and workflows in theory, but they must be practically implemented to provide return on investment.  

Investigation before investment

Before investing in AI tools, buyers should ask questions pertaining to each stage of the adoption journey. The answers to these questions will not only help buyers gauge if a tool could be worth the investment, but also plan how the new tool will practically fit into the organization’s existing technology and workflows.  

Figure 1: Initial questions to consider when starting to shop for AI [2].

These questions are good to imagine how a tool will fit into your organization and determine if a vendor is worth further evaluation. Once you decide a tool has potential use and feasibility in your organization, it is time to dive deeper and learn more.  

Ask vendors specific questions about their technology. This information will most likely not be on their websites, and since it involves intellectual property, it may require an NDA.  

Find a longer list of questions to ask vendors and what to look for in their responses in the white paper “CISO’s Guide to Buying AI.”

Committing to transparency amidst the AI hype

For security teams to make the most out of new AI tools, they must trust the AI. Especially in an AI marketplace full of hype and obfuscation, transparency should be baked into both the descriptions of the AI tool and the tool’s functionality itself. With that in mind, here are some specifics about what techniques make up Darktrace’s AI.  

Darktrace as an AI cybersecurity vendor

Darktrace has been using AI technology in cybersecurity for over 10 years. As a pioneer in the space, we have made innovation part of our process.  

The Darktrace ActiveAI Security Platform™ uses multi-layered AI that trains on your unique business operations data for tailored security across the enterprise. This approach ensures that the strengths of one AI technique make up for the shortcomings of another, providing well-rounded and reliable coverage. Our models are always on and always learning, allowing your team to stop attacks in real time.  

The machine learning techniques used in our solution include:

  • Unsupervised machine learning
  • Multiple Clustering Techniques
  • Multiple anomaly detection models in tandem analyzing data across hundreds of metrics
  • Bayesian probabilistic methods
  • Bayesian metaclassifier for autonomous fine-tuning of unsupervised machine learning models
  • Deep learning engines
  • Graph theory
  • Applied supervised machine learning for investigative AI  
  • Neural networks
  • Reinforcement Learning
  • Generative and applied AI
  • Natural Language Processing (NLP) and Large Language Models (LLMs)
  • Post-processing models

Additionally, since Darktrace focuses on using the customer’s data across its entire digital estate, it brings a range of advantages in data privacy, interpretability, and data transfer costs.  

Building trust with Darktrace AI

Darktrace further supports the human security team’s adoption of our technology by building trust. To do that, we designed our platform to give your team visibility and control over the AI.  

Instead of functioning as a black box, our products focus on interpretability and sharing confidence levels. This includes specifying the threshold of what triggered a certain alert and the details of the AI Analyst’s investigations to see how it reached its conclusions. The interpretability of our AI uplevels and upskills the human security team with more information to drive investigations and remediation actions.  

For complete control, the human security team can modify all the detection and response thresholds for our model alerts to customize them to fit specific business preferences.  

Conclusion

CISO’s are increasingly considering investing in AI cybersecurity tools, but in this rapidly growing field, it’s not always clear what to look for.  

Buyers should first determine their goals for a new AI tool, then research possible vendors by reviewing validation and asking deeper questions. This will reveal if a tool is a good match for the organization to move forward with investment and adoption.  

As leaders in the AI cybersecurity industry, Darktrace is always ready to help you on your AI journey.  

Learn more about the most common types of machine learning in cybersecurity in the white paper “CISO’s Guide to Buying AI.”

References

  1. Gartner, April 17, 2024, “Emerging Tech: Navigating the Impact of AI on SecOps Solution Development.”  
  1. Inspired by Gartner, May 14, 2024, “Presentation Slides: AI Survey Reveals AI Security and Privacy Leads to Improved ROI” and NHS England, September, 18, 2020, “A Buyer’s Guide to AI in Health and Care,” Available at: https://transform.england.nhs.uk/ai-lab/explore-all-resources/adopt-ai/a-buyers-guide-to-ai-in-health-and-care/  
Continue reading
About the author
Nicole Carignan
VP of Strategic Cyber AI

Blog

/

October 16, 2024

/

Inside the SOC

Triaging Triada: Understanding an Advanced Mobile Trojan and How it Targets Communication and Banking Applications

Default blog imageDefault blog image

The rise of android malware

Recently, there has been a significant increase in malware strains targeting mobile devices, with a growing number of Android-based malware families, such as banking trojans, which aim to steal sensitive banking information from organizations and individuals worldwide.

These malware families attempt to access users’ accounts to steal online banking credentials and cookies, bypass multi-factor authentication (MFA), and conduct automatic transactions to steal funds [1]. They often masquerade as legitimate software or communications from social media platforms to compromise devices. Once installed, they use tactics such as keylogging, dumping cached credentials, and searching the file system for stored passwords to steal credentials, take over accounts, and potentially perform identity theft [1].

One recent example is the Antidot Trojan, which infects devices by disguising itself as an update page for Google Play. It establishes a command-and-control (C2) channel with a server, allowing malicious actors to execute commands and collect sensitive data [2].

Despite these malware’s ability to evade detection by standard security software, for example, by changing their code [3], Darktrace recently detected another Android malware family, Triada, communicating with a C2 server and exfiltrating data.

Triada: Background and tactics

First surfacing in 2016, Triada is a modular mobile trojan known to target banking and financial applications, as well as popular communication applications like WhatsApp, Facebook, and Google Mail [4]. It has been deployed as a backdoor on devices such as CTV boxes, smartphones, and tablets during the supply chain process [5]. Triada can also be delivered via drive-by downloads, phishing campaigns, smaller trojans like Leech, Ztorg, and Gopro, or more recently, as a malicious module in applications such as unofficial versions of WhatsApp, YoWhatsApp, and FM WhatsApp [6] [7].

How does Triada work?

Once downloaded onto a user’s device, Triada collects information about the system, such as the device’s model, OS version, SD card space, and list of installed applications, and sends this information to a C2 server. The server then responds with a configuration file containing the device’s personal identification number and settings, including the list of modules to be installed.

After a device has been successfully infected by Triada, malicious actors can monitor and intercept incoming and outgoing texts (including two-factor authentication messages), steal login credentials and credit card information from financial applications, divert in-application purchases to themselves, create fake messaging and email accounts, install additional malicious applications, infect devices with ransomware, and take control of the camera and microphone [4] [7].

For devices infected by unofficial versions of WhatsApp, which are downloaded from third-party app stores [9] and from mobile applications such as Snaptube and Vidmate , Triada collects unique device identifiers, information, and keys required for legitimate WhatsApp to work and sends them to a remote server to register the device [7] [12]. The server then responds by sending a link to the Triada payload, which is downloaded and launched. This payload will also download additional malicious modules, sign into WhatsApp accounts on the target’s phone, and request the same permissions as the legitimate WhatsApp application, such as access to SMS messages. If granted, a malicious actor can sign the user up for paid subscriptions without their knowledge. Triada then collects information about the user’s device and mobile operator and sends it to the C2 server [9] [12].

How does Triada avoid detection?

Triada evades detection by modifying the Zygote process, which serves as a template for every application in the Android OS. This enables the malware to become part of every application launched on a device [3]. It also substitutes system functions and conceals modules from the list of running processes and installed apps, ensuring that the system does not raise the alarm [3]. Additionally, as Triada connects to a C2 server on the first boot, infected devices remain compromised even after a factory reset [4].

Triada attack overview

Across multiple customer deployments, devices were observed making a large number of connections to a range of hostnames, primarily over encrypted SSL and HTTPS protocols. These hostnames had never previously been observed on the customers’ networks and appear to be algorithmically generated. Examples include “68u91.66foh90o[.]com”, “92n7au[.]uhabq9[.]com”, “9yrh7.mea5ms[.]com”, and “is5jg.3zweuj[.]com”.

External Sites Summary Graph showing the rarity of the hostname “92n7au[.]uhabq9[.]com” on a customer network.
Figure 1: External Sites Summary Graph showing the rarity of the hostname “92n7au[.]uhabq9[.]com” on a customer network.

Most of the IP addresses associated with these hostnames belong to an ASN associated with the cloud provider Alibaba (i.e., AS45102 Alibaba US Technology Co., Ltd). These connections were made over a range of high number ports over 1000, most commonly over 30000 such as 32091, which Darktrace recognized as extremely unusual for the SSL and HTTPS protocols.

Screenshot of a Model Alert Event log showing a device connecting to the endpoint “is5jg[.]3zweuj[.]com” over port 32091.
Figure 2: Screenshot of a Model Alert Event log showing a device connecting to the endpoint “is5jg[.]3zweuj[.]com” over port 32091.

On several customer deployments, devices were seen exfiltrating data to hostnames which also appeared to be algorithmically generated. This occurred via HTTP POST requests containing unusual URI strings that were made without a prior GET request, indicating that the infected device was using a hardcoded list of C2 servers.

Screenshot of a Model Alert Event Log showing the device posting the string “i8xps1” to the hostname “72zf6.rxqfd[.]com.
Figure 3: Screenshot of a Model Alert Event Log showing the device posting the string “i8xps1” to the hostname “72zf6.rxqfd[.]com.
 Screenshot of a Model Alert Event Log showing the device posting the string “sqyjyadwwq” to the hostname “9yrh7.mea5ms[.]com”.
Figure 4: Screenshot of a Model Alert Event Log showing the device posting the string “sqyjyadwwq” to the hostname “9yrh7.mea5ms[.]com”.

These connections correspond with reports that devices affected by Triada communicate with the C2 server to transmit their information and receive instructions for installing the payload.

A number of these endpoints have communicating files associated with the unofficial WhatsApp versions YoWhatsApp and FM WhatsApp [11] [12] [13] . This could indicate that the devices connecting to these endpoints were infected via malicious modules in the unofficial versions of WhatsApp, as reported by open-source intelligence (OSINT) [10] [12]. It could also mean that the infected devices are using these connections to download additional files from the C2 server, which could infect systems with additional malicious modules related to Triada.

Moreover, on certain customer deployments, shortly before or after connecting to algorithmically generated hostnames with communicating files linked to YoWhatsApp and FM WhatsApp, devices were also seen connecting to multiple endpoints associated with WhatsApp and Facebook.

Figure 5: Screenshot from a device’s event log showing connections to endpoints associated with WhatsApp shortly after it connected to “9yrh7.mea5ms[.]com”.

These surrounding connections indicate that Triada is attempting to sign in to the users’ WhatsApp accounts on their mobile devices to request permissions such as access to text messages. Additionally, Triada sends information about users’ devices and mobile operators to the C2 server.

The connections made to the algorithmically generated hostnames over SSL and HTTPS protocols, along with the HTTP POST requests, triggered multiple Darktrace models to alert. These models include those that detect connections to potentially algorithmically generated hostnames, connections over ports that are highly unusual for the protocol used, unusual connectivity over the SSL protocol, and HTTP POSTs to endpoints that Darktrace has determined to be rare for the network.

Conclusion

Recently, the use of Android-based malware families, aimed at stealing banking and login credentials, has become a popular trend among threat actors. They use this information to perform identity theft and steal funds from victims worldwide.

Across affected customers, multiple devices were observed connecting to a range of likely algorithmically generated hostnames over SSL and HTTPS protocols. These devices were also seen sending data out of the network to various hostnames via HTTP POST requests without first making a GET request. The URIs in these requests appeared to be algorithmically generated, suggesting the exfiltration of sensitive network data to multiple Triada C2 servers.

This activity highlights the sophisticated methods used by malware like Triada to evade detection and exfiltrate data. It underscores the importance of advanced security measures and anomaly-based detection systems to identify and mitigate such mobile threats, protecting sensitive information and maintaining network integrity.

Credit to: Justin Torres (Senior Cyber Security Analyst) and Charlotte Thompson (Cyber Security Analyst).

Appendices

Darktrace Model Detections

Model Alert Coverage

Anomalous Connection / Application Protocol on Uncommon Port

Anomalous Connection / Multiple Connections to New External TCP Port

Anomalous Connection / Multiple HTTP POSTS to Rare Hostname

Anomalous Connections / Multiple Failed Connections to Rare Endpoint

Anomalous Connection / Suspicious Expired SSL

Compromise / DGA Beacon

Compromise / Domain Fluxing

Compromise / Fast Beaconing to DGA

Compromise / Sustained SSL or HTTP Increase

Compromise / Unusual Connections to Rare Lets Encrypt

Unusual Activity / Unusual External Activity

AI Analyst Incident Coverage

Unusual Repeated Connections to Multiple Endpoints

Possible SSL Command and Control

Unusual Repeated Connections

List of Indicators of Compromise (IoCs)

Ioc – Type - Description

  • is5jg[.]3zweuj[.]com - Hostname - Triada C2 Endpoint
  • 68u91[.]66foh90o[.]com - Hostname - Triada C2 Endpoint
  • 9yrh7[.]mea5ms[.]com - Hostname - Triada C2 Endpoint
  • 92n7au[.]uhabq9[.]com - Hostname - Triada C2 Endpoint
  • 4a5x2[.]fs4ah[.]com - Hostname - Triada C2 Endpoint
  • jmll4[.]66foh90o[.]com - Hostname - Triada C2 Endpoint
  • mrswd[.]wo87sf[.]com - Hostname - Triada C2 Endpoint
  • lptkw[.]s4xx6[.]com - Hostname - Triada C2 Endpoint
  • ya27fw[.]k6zix6[.]com - Hostname - Triada C2 Endpoint
  • w0g25[.]66foh90o[.]com - Hostname - Triada C2 Endpoint
  • kivr8[.]wd6vy[.]com - Hostname - Triada C2 Endpoint
  • iuwe64[.]ct8pc6[.]com - Hostname - Triada C2 Endpoint
  • qefgn[.]8z0le[.]com - Hostname - Triada C2 Endpoint
  • a6y0x[.]xu0h7[.]com - Hostname - Triada C2 Endpoint
  • wewjyw[.]qb6ges[.]com - Hostname - Triada C2 Endpoint
  • vx9dle[.]n0qq3z[.]com - Hostname - Triada C2 Endpoint
  • 72zf6[.]rxqfd[.]com - Hostname - Triada C2 Endpoint
  • dwq[.]fsdw4f[.]com - Hostname - Triada C2 Endpoint
  • tqq6g[.]66foh90o[.]com - Hostname - Triada C2 Endpoint
  • 1rma1[.]4f8uq[.]com - Hostname - Triada C2 Endpoint
  • 0fdwa[.]7j3gj[.]com - Hostname - Triada C2 Endpoint
  • 5a7en[.]1e42t[.]com - Hostname - Triada C2 Endpoint
  • gmcp4[.]1e42t[.]com - Hostname - Triada C2 Endpoint
  • g7190[.]rt14v[.]com - Hostname - Triada C2 Endpoint
  • goyvi[.]2l2wa[.]com - Hostname - Triada C2 Endpoint
  • zq6kk[.]ca0qf[.]com - Hostname - Triada C2 Endpoint
  • sv83k[.]bn3avv[.]com - Hostname - Triada C2 Endpoint
  • 9sae7h[.]ct8pc6[.]com - Hostname - Triada C2 Endpoint
  • jpygmk[.]qt7tqr[.]com - Hostname - Triada C2 Endpoint
  • av2wg[.]rt14v[.]com - Hostname - Triada C2 Endpoint
  • ugbrg[.]osz1p[.]com - Hostname - Triada C2 Endpoint
  • hw2dm[.]wtws9k[.]com - Hostname - Triada C2 Endpoint
  • kj9atb[.]hai8j1[.]com - Hostname - Triada C2 Endpoint
  • pls9b[.]b0vb3[.]com - Hostname - Triada C2 Endpoint
  • 8rweau[.]j7e7r[.]com - Hostname - Triada C2 Endpoint
  • wkc5kn[.]j7e7r[.]com - Hostname - Triada C2 Endpoint
  • v58pq[.]mpvflv[.]com - Hostname - Triada C2 Endpoint
  • zmai4k[.]huqp3e[.]com - Hostname - Triada C2 Endpoint
  • eajgum[.]huqp3e[.]com - Hostname - Triada C2 Endpoint
  • mxl9zg[.]kv0pzv[.]com - Hostname - Triada C2 Endpoint
  • ad1x7[.]mea5ms[.]com - Hostname - Triada C2 Endpoint
  • ixhtb[.]s9gxw8[.]com - Hostname - Triada C2 Endpoint
  • vg1ne[.]uhabq9[.]com - Hostname - Triada C2 Endpoint
  • q5gd0[.]birxpk[.]com - Hostname - Triada C2 Endpoint
  • dycsw[.]h99n6[.]com - Hostname - Triada C2 Endpoint
  • a3miu[.]h99n6[.]com - Hostname - Triada C2 Endpoint
  • qru62[.]5qwu8b5[.]com - Hostname - Triada C2 Endpoint
  • 3eox8[.]abxkoop[.]com - Hostname - Triada C2 Endpoint
  • 0kttj[.]bddld[.]com - Hostname - Triada C2 Endpoint
  • gjhdr[.]xikuj[.]com - Hostname - Triada C2 Endpoint
  • zq6kk[.]wm0hd[.]com - Hostname - Triada C2 Endpoint
  • 8.222.219[.]234 - IP Address - Triada C2 Endpoint
  • 8.222.244[.]205 - IP Address - Triada C2 Endpoint
  • 8.222.243[.]182 - IP Address - Triada C2 Endpoint
  • 8.222.240[.]127 - IP Address - Triada C2 Endpoint
  • 8.219.123[.]139 - IP Address - Triada C2 Endpoint
  • 8.219.196[.]124 - IP Address - Triada C2 Endpoint
  • 8.222.217[.]73 - IP Address - Triada C2 Endpoint
  • 8.222.251[.]253 - IP Address - Triada C2 Endpoint
  • 8.222.194[.]254 - IP Address - Triada C2 Endpoint
  • 8.222.251[.]34 - IP Address - Triada C2 Endpoint
  • 8.222.216[.]105 - IP Address - Triada C2 Endpoint
  • 47.245.83[.]167 - IP Address - Triada C2 Endpoint
  • 198.200.54[.]56 - IP Address - Triada C2 Endpoint
  • 47.236.113[.]126 - IP Address - Triada C2 Endpoint
  • 47.241.47[.]128 - IP Address - Triada C2 Endpoint
  • /iyuljwdhxk - URI - Triada C2 URI
  • /gvuhlbzknh - URI - Triada C2 URI
  • /sqyjyadwwq - URI - Triada C2 URI
  • /cncyz3 - URI - Triada C2 URI
  • /42k0zk - URI - Triada C2 URI
  • /75kdl5 - URI - Triada C2 URI
  • /i8xps1 - URI - Triada C2 URI
  • /84gcjmo - URI - Triada C2 URI
  • /fkhiwf - URI - Triada C2 URI

MITRE ATT&CK Mapping

Technique Name - Tactic - ID - Sub-Technique of

Data Obfuscation - COMMAND AND CONTROL - T1001

Non-Standard Port - COMMAND AND CONTROL - T1571

Standard Application Layer Protocol - COMMAND AND CONTROL ICS - T0869

Non-Application Layer Protocol - COMMAND AND CONTROL - T1095

Masquerading - EVASION ICS - T0849

Man in the Browser - COLLECTION - T1185

Web Protocols - COMMAND AND CONTROL - T1071.001 -T1071

External Proxy - COMMAND AND CONTROL - T1090.002 - T1090

Domain Generation Algorithms - COMMAND AND CONTROL - T1568.002 - T1568

Web Services - RESOURCE DEVELOPMENT - T1583.006 - T1583

DNS - COMMAND AND CONTROL - T1071.004 - T1071

Fast Flux DNS - COMMAND AND CONTROL - T1568.001 - T1568

One-Way Communication - COMMAND AND CONTROL - T1102.003 - T1102

Digital Certificates - RESOURCE DEVELOPMENT - T1587.003 - T1587

References

[1] https://www.checkpoint.com/cyber-hub/cyber-security/what-is-trojan/what-is-a-banking-trojan/

[2] https://cyberfraudcentre.com/the-rise-of-the-antidot-android-banking-trojan-a-comprehensive-guide

[3] https://www.zimperium.com/glossary/banking-trojans/

[4] https://www.geeksforgeeks.org/what-is-triada-malware/

[5] https://www.infosecurity-magazine.com/news/malware-infected-devices-retailers/

[6] https://www.pcrisk.com/removal-guides/24926-triada-trojan-android

[7] https://securelist.com/malicious-whatsapp-mod-distributed-through-legitimate-apps/107690/

[8] https://securityboulevard.com/2024/02/impact-of-badbox-and-peachpit-malware-on-android-devices/

[9] https://threatpost.com/custom-whatsapp-build-malware/168892/

[10] https://securelist.com/triada-trojan-in-whatsapp-mod/103679/

[11] https://www.virustotal.com/gui/domain/is5jg.3zweuj.com/relations

[12] https://www.virustotal.com/gui/domain/92n7au.uhabq9.com/relations

[13] https://www.virustotal.com/gui/domain/68u91.66foh90o.com/relations

Continue reading
About the author
Justin Torres
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI